Sunday, July 3, 2022
HomeNanotechnologyQuercetin attenuates neurotoxicity induced by iron oxide nanoparticles | Journal of Nanobiotechnology

Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles | Journal of Nanobiotechnology


  • 1.

    Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012;112:2323–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci. 2017;8:63–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Estelrich J, Escribano E, Queralt J, Busquets M. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci. 2015;16:8070–101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. 2012. https://doi.org/10.2147/IJN.S30320.

    Article 

    Google Scholar
     

  • 6.

    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63:24–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Ohannesian N, De Leo CT, Martirosyan KS. Dextran coated superparamagnetic iron oxide nanoparticles produced by microfluidic process. Mater Today Proc. 2019;13:397–403.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Reczyńska K, Marszałek M, Zarzycki A, Reczyński W, Kornaus K, Pamuła E, Chrzanowski W. Superparamagnetic iron oxide nanoparticles modified with silica layers as potential agents for lung cancer treatment. Nanomaterials. 2020;10:1076.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Kumar P, Agnihotri S, Roy I. Preparation and characterization of superparamagnetic iron oxide nanoparticles for magnetically guided drug delivery. Int J Nanomed. 2018;13:43–6.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today. 2011;14:330–8.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.

    Article 
    CAS 

    Google Scholar
     

  • 13.

    Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med. 2004;36:976–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci. 2017. https://doi.org/10.1186/s12868-017-0369-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Dora MF, Taha NM, Lebda MA, Hashem AE, Elfeky MS, El-Sayed YS, Jaouni SA, El-Far AH. Quercetin attenuates brain oxidative alterations induced by iron oxide nanoparticles in rats. Int J Mol Sci. 2021;22:3829.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules. 2019. https://doi.org/10.3390/biom10010059.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10:84–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem. 2006;54:6343–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol. 2009;29:1169–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev. 2016;2016:2986796.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lesjak M, Surjit KSS. Role of dietary flavonoids in iron homeostasis. Pharmaceuticals (Basel). 2019. https://doi.org/10.3390/ph12030119.

    Article 

    Google Scholar
     

  • 22.

    Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomed. 2015;10:6757–72.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal. 2014;20:1324–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823:1434–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Fretham SJB, Carlson ES, Georgieff MK. The role of iron in learning and memory. Adv Nutr. 2011;2:112–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142:24–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr. 2007;85:778–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, et al. Identification of an intestinal heme transporter. Cell. 2005;122:789–801.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Parrow NL, Fleming RE, Minnick MF, Maurelli AT. Sequestration and scavenging of iron in infection. Infect Immun. 2013;81:3503–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Ganasen M, Togashi H, Takeda H, Asakura H, Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, Yuan X, et al. Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun Biol. 2018. https://doi.org/10.1038/s42003-018-0121-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Yanatori I, Kishi F. DMT1 and iron transport. Free Radical Biol Med. 2019;133:55–63.

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127:917–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Vanoaica L, Darshan D, Richman L, Schümann K, Kühn LC. Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab. 2010;12:273–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Knovich MA, Storey JA, Coffman LG, Torti SV, Torti FM. Ferritin for the clinician. Blood Rev. 2009;23:95–104.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Petrak J, Vyoral D. Hephaestin—a ferroxidase of cellular iron export. Int J Biochem Cell Biol. 2005;37:1173–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Burkhart A, Skjorringe T, Johnsen KB, Siupka P, Thomsen LB, Nielsen MS, Thomsen LL, Moos T. Expression of iron-related proteins at the neurovascular unit supports reduction and reoxidation of iron for transport through the blood-brain barrier. Mol Neurobiol. 2016;53:7237–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim Biophys Acta. 2012;1820:188–202.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106:1559s–66s.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116:565–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015;1852:1347–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Lane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR. Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta. 2015;1853:1130–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Frazer DM, Anderson GJ. The regulation of iron transport. Biofactors. 2014;40:206–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Mayle KM, Le AM, Kamei DT. The intracellular trafficking pathway of transferrin. Biochim Biophys Acta. 2012;1820:264–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    López-Hernández T, Puchkov D, Krause E, Maritzen T, Haucke V. Endocytic regulation of cellular ion homeostasis controls lysosome biogenesis. Nat Cell Biol. 2020;22:815–27.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 47.

    Kaplan J. Mechanisms of cellular iron acquisition: another iron in the fire. Cell. 2002;111:603–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14:551–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 49.

    Lambe T, Simpson RJ, Dawson S, Bouriez-Jones T, Crockford TL, Lepherd M, Latunde-Dada GO, Robinson H, Raja KB, Campagna DR, et al. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood. 2009;113:1805–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Ma L, Ouyang Q, Werthmann GC, Thompson HM, Morrow EM. Live-cell microscopy and fluorescence-based measurement of luminal pH in intracellular organelles. Front Cell Dev Biol. 2017. https://doi.org/10.3389/fcell.2017.00071.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 2012;1823:1468–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Richardson DR, Lane DJR, Becker EM, Huang MLH, Whitnall M, Rahmanto YS, Sheftel AD, Ponka P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci USA. 2010;107:10775–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Zhou ZD, Tan E-K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener. 2017. https://doi.org/10.1186/s13024-017-0218-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Crichton RR, Dexter DT, Ward RJ. Brain iron metabolism and its perturbation in neurological diseases. Monatsh Chem. 2011;142:341–55.

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Selim MH, Ratan RR. The role of iron neurotoxicity in ischemic stroke. Ageing Res Rev. 2004;3:345–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Lisman JE, Grace AA. The Hippocampal-VTA Loop: controlling the entry of information into long-term memory. Neuron. 2005;46:703–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57:467–78.

    PubMed 
    Article 

    Google Scholar
     

  • 58.

    Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol Ther. 2012;133:177–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol. 2007;83:149–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    McCarthy RC, Kosman DJ. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Front Mol Neurosci. 2015. https://doi.org/10.3389/fnmol.2015.00031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20:77–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in neurodegeneration—cause or consequence? Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00180.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    McCarthy RC, Kosman DJ. Mechanistic analysis of iron accumulation by endothelial cells of the BBB. Biometals. 2012;25:665–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Moos T, Nielsen TR, Skjørringe T, Morgan EH. Iron trafficking inside the brain. J Neurochem. 2007;103:1730–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Mol Med. 2001;7:103–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 66.

    Kaur D, Rajagopalan S, Andersen JK. Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson’s disease. Brain Res. 2009;1297:17–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5:429–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 68.

    Moos T, Morgan EH. Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat. Brain Res. 1998;790:115–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 69.

    Lee HP, Zhu X, Liu G, Chen SG, Perry G, Smith MA, Lee HG. Divalent metal transporter, iron, and Parkinson’s disease: a pathological relationship. Cell Res. 2010;20(4):397–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Pirpamer L, Hofer E, Gesierich B, De Guio F, Freudenberger P, Seiler S, Duering M, Jouvent E, Duchesnay E, Dichgans M, et al. Determinants of iron accumulation in the normal aging brain. Neurobiol Aging. 2016;43:149–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 71.

    Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loréal O. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 72.

    Wood JC. Diagnosis and management of transfusion iron overload: the role of imaging. Am J Hematol. 2007;82:1132–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis. 2011;2011:1–9.

    Article 
    CAS 

    Google Scholar
     

  • 74.

    Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radical Biol Med. 2013;65:1174–94.

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:1–19.

    Article 
    CAS 

    Google Scholar
     

  • 76.

    Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radical Biol Med. 2013;62:157–69.

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Gammella E, Recalcati S, Cairo G. Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxid Med Cell Longev. 2016;2016:1–9.

    Article 
    CAS 

    Google Scholar
     

  • 78.

    Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217:1915–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 79.

    Hegde ML, Hegde PM, Holthauzen LMF, Hazra TK, Rao KSJ, Mitra S. Specific inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron. J Biol Chem. 2010;285:28812–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 80.

    Player TJ, Mills DJ, Horton AA. NADPH-dependent lipid peroxidation in mitochondria from livers of young and old rats and from rat hepatoma D30. Biochem Soc Trans. 1977;5:1506–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 81.

    Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 82.

    Monzani E, Nicolis S, Dell’Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamine, oxidative stress and protein-quinone modifications in Parkinson’s and other neurodegenerative diseases. Angew Chem Int Ed. 2019;58:6512–27.

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-2298-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139(Suppl 1):179–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 85.

    Thomas GEC, Leyland LA, Schrag AE, Lees AJ, Acosta-Cabronero J, Weil RS. Brain iron deposition is linked with cognitive severity in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2020;91:418–25.

    PubMed 
    Article 

    Google Scholar
     

  • 86.

    Xiong X-Y, Liu L, Wang F-X, Yang Y-R, Hao J-W, Wang P-F, Zhong Q, Zhou K, Xiong A, Zhu W-Y, et al. Toll-Like receptor 4/MyD88–mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage. Circulation. 2016;134:1025–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 87.

    Edwards Iii GA, Gamez N, Escobedo G Jr, Calderon O, Moreno-Gonzalez I. Modifiable risk factors for Alzheimer’s disease. Front Aging Neurosci. 2019. https://doi.org/10.3389/fnagi.2019.00146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, Bush AI. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry. 2019;25:2932–41.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 89.

    Gong N-J, Dibb R, Bulk M, van der Weerd L, Liu C. Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. Neuroimage. 2019;191:176–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 90.

    Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. Neuroimage. 2011;55:32–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 91.

    Núñez MT, Hidalgo C. Noxious Iron–calcium connections in neurodegeneration. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front Neurosci. 2018;12:632.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 93.

    Hansson O, van Westen D, Strandberg OT, Lampinen B, Stomrud E, Acosta-Cabronero J, Spotorno N. Relationship between cortical iron and tau aggregation in Alzheimer’s disease. Brain. 2020;143:1341–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 94.

    Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 95.

    Bergman H, Deuschl G. Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord. 2002;17:S28–40.

    PubMed 
    Article 

    Google Scholar
     

  • 96.

    Youdim MB, Bakhle Y. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol. 2006;147:S287–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 97.

    Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BXW, Adlard PA, Cherny RA, Lam LQ, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;18:291–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 98.

    Stoessl AJ, Martin WRW, McKeown MJ, Sossi V. Advances in imaging in Parkinson’s disease. Lancet Neurol. 2011;10:987–1001.

    PubMed 
    Article 

    Google Scholar
     

  • 99.

    Liang T, Qian Z-M, Mu M-D, Yung W-H, Ke Y. Brain hepcidin suppresses major pathologies in experimental parkinsonism. iScience. 2020;23:101284.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 100.

    Gong J, Du F, Qian ZM, Luo QQ, Sheng Y, Yung WH, Xu YX, Ke Y. Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radic Biol Med. 2016;90:126–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 101.

    DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T. Deciphering the iron side of stroke: neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Gill D, Monori G, Tzoulaki I, Dehghan A. Iron status and risk of stroke. Stroke. 2018;49:2815–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 103.

    Leys D, Hénon H, Mackowiak-Cordoliani M-A, Pasquier F. Poststroke dementia. Lancet Neurol. 2005;4:752–9.

    PubMed 
    Article 

    Google Scholar
     

  • 104.

    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 105.

    Ding H, Yan C-Z, Shi H, Zhao Y-S, Chang S-Y, Yu P, Wu W-S, Zhao C-Y, Chang Y-Z, Duan X-L. Hepcidin is involved in iron regulation in the ischemic brain. PLoS ONE. 2011;6:e25324.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 106.

    Stankiewicz JM, Brass SD. Role of iron in neurotoxicity: a cause for concern in the elderly? Curr Opin Clin Nutr Metab Care. 2009;12:22–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 107.

    Kondo Y, Asanuma M, Nishibayashi S, Iwata E, Ogawa N. Late-onset lipid peroxidation and neuronal cell death following transient forebrain ischemia in rat brain. Brain Res. 1997;772:37–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 108.

    Hou Y, Xu Z, Sun S. Controlled synthesis and chemical conversions of FeO nanoparticles. Angew Chem Int Ed Engl. 2007;46:6329–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 109.

    Muthiah M, Park IK, Cho CS. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv. 2013;31:1224–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 110.

    Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 111.

    Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale. 2013;5:10729–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 112.

    Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-Garcia A, Couleaud P, Miranda R, Belda-Iniesta C, Ayuso-Sacido A. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine (Rij). 2014;1:2.

    Article 

    Google Scholar
     

  • 113.

    Vácha R, Martinez-Veracoechea FJ, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 2011;11:5391–5.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 114.

    Kenry K, Yeo T, Manghnani PN, Middha E, Pan Y, Chen H, Lim CT, Liu B. Mechanistic understanding of the biological responses to polymeric nanoparticles. ACS Nano. 2020;14(4):4509–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 115.

    Yang WJ, Lee JH, Hong SC, Lee J, Lee J, Han DW. Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials (Basel). 2013;6:4689–706.

    Article 
    CAS 

    Google Scholar
     

  • 116.

    Badman RP, Moore SL, Killian JL, Feng T, Cleland TA, Hu F, Wang MD. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci Rep. 2020;10:11239.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 117.

    Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep. 2019;9:6876.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 118.

    Enteshari Najafabadi R, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol. 2018;19:59.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 119.

    Mulens-Arias V, Rojas JM, Barber DF. The intrinsic biological identities of iron oxide nanoparticles and their coatings: unexplored territory for combinatorial therapies. Nanomaterials (Basel). 2020. https://doi.org/10.3390/nano10050837.

    Article 

    Google Scholar
     

  • 120.

    Rojas JM, Gavilán H, Del Dedo V, Lorente-Sorolla E, Sanz-Ortega L, da Silva GB, Costo R, Perez-Yagüe S, Talelli M, Marciello M, et al. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater. 2017;58:181–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 121.

    Imam SZ, Lantz-McPeak SM, Cuevas E, Rosas-Hernandez H, Liachenko S, Zhang Y, Sarkar S, Ramu J, Robinson BL, Jones Y, et al. Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Mol Neurobiol. 2015;52:913–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 122.

    Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm. 2008;5:316–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 123.

    Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE. 2014;9:e85835.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 124.

    de Oliveira GMT, Kist LW, Pereira TCB, Bortolotto JW, Paquete FL, de Oliveira EMN, Leite CE, Bonan CD, de Souza Basso NR, Papaleo RM, Bogo MR. Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2014;162:77–84.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 125.

    Desestret V, Brisset JC, Moucharrafie S, Devillard E, Nataf S, Honnorat J, Nighoghossian N, Berthezène Y, Wiart M. Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke. 2009;40:1834–41.

    PubMed 
    Article 

    Google Scholar
     

  • 126.

    Teller S, Tahirbegi IB, Mir M, Samitier J, Soriano J. Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease. Sci Rep. 2015;5:17261.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 127.

    Piñero DJ, Connor JR. Iron in the brain: an important contributor in normal and diseased states. Neuroscientist. 2000;6:435–53.

    Article 

    Google Scholar
     

  • 128.

    Gorman AW, Deh KM, Schwiedrzik CM, White JR, Groman EV, Fisher CA, Gillen KM, Spincemaille P, Rasmussen S, Prince MR, et al. Brain iron distribution after multiple doses of ultra-small superparamagnetic iron oxide particles in rats. Comp Med. 2018;68:139–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013;34:243–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 130.

    Najafabadi RE, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol. 2018;19:1–12.

    Article 
    CAS 

    Google Scholar
     

  • 131.

    Shen J, Kim H-C, Su H, Wang F, Wolfram J, Kirui D, Mai J, Mu C, Ji L-N, Mao Z-W. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics. 2014;4:487.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 132.

    Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32:3435–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 133.

    Liu Y, Xia Q, Liu Y, Zhang S, Cheng F, Zhong Z, Wang L, Li H, Xiao K. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology. 2014;25:425101.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 134.

    Du J, Zhu W, Yang L, Wu C, Lin B, Wu J, Jin R, Shen T, Ai H. Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation. Regen Biomater. 2016;3:223–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 135.

    Kazemipour N, Nazifi S, Poor MHH, Esmailnezhad Z, Najafabadi RE, Esmaeili A. Hepatotoxicity and nephrotoxicity of quercetin, iron oxide nanoparticles, and quercetin conjugated with nanoparticles in rats. Comp Clin Pathol. 2018;27:1621–8.

    CAS 
    Article 

    Google Scholar
     

  • 136.

    Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8:1–13.


    Google Scholar
     

  • 137.

    Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009;6:1417–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 138.

    Badman RP, Moore SL, Killian JL, Feng T, Cleland TA, Hu F, Wang MD. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci Rep. 2020;10:1–14.

    Article 
    CAS 

    Google Scholar
     

  • 139.

    Yildirimer L, Thanh NT, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6:585–607.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 140.

    Hussain CM. Analytical applications of functionalized magnetic nanoparticles. Cambridge: Royal Society of Chemistry; 2021.

    Book 

    Google Scholar
     

  • 141.

    Abed SN, Deb PK, Surchi HS, Kokaz SF, Jamal SM, Bandopadhyay S, Tekade RK. Nanocarriers in different preclinical and clinical stages. In: Tekade RK, editor. Basic fundamentals of drug delivery. Cambridge: Academic press; 2019. p. 685–731.

    Chapter 

    Google Scholar
     

  • 142.

    Pai AB. 6. Iron oxide nanoparticle formulations for supplementation. Met Ions Life Sci. 2019. https://doi.org/10.1515/9783110527872-012.

    Article 
    PubMed 

    Google Scholar
     

  • 143.

    Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, Belda-Iniesta C, Ayuso-Sacido A. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine. 2014;1:1–2.

    Article 

    Google Scholar
     

  • 144.

    Carvalho A, Fernandes AR, Baptista PV. Nanoparticles as delivery systems in cancer therapy: focus on gold nanoparticles and drugs. In: Mohapatra SS, Ranjan S, editors. Applications of targeted nano drugs and delivery systems. Amsterdam: Elsevier; 2019. p. 257–95.

    Chapter 

    Google Scholar
     

  • 145.

    Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 146.

    Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, Hsiao C-D. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25:3159.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 147.

    Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, Goodman S, Moseley M. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol. 2021;27:1–13.


    Google Scholar
     

  • 148.

    Fathi F, Seyed Sadjadi MA, Ghafari Cherati M. Systematic review: superparamagnetic iron oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis. Int J Nano Dimens. 2016;7:270–7.

    CAS 

    Google Scholar
     

  • 149.

    Iv M, Ng NN, Nair S, Zhang Y, Lavezo J, Cheshier SH, Holdsworth SJ, Moseley ME, Rosenberg J, Grant GA. Brain iron assessment after ferumoxytol-enhanced MRI in children and young adults with arteriovenous malformations: a case-control study. Radiology. 2020;297:438–46.

    PubMed 
    Article 

    Google Scholar
     

  • 150.

    Crețu BE, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging constructs: the rise of iron oxide nanoparticles. Molecules. 2021;26(11):3437.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 151.

    Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery. 2005;57:785–96.

    PubMed 
    Article 

    Google Scholar
     

  • 152.

    Dosa E, Hamilton B, Rooney W, Neuwelt E: Magnetic resonance imaging using ferumoxytol improves the visualization of central nervous system vascular malformations. In: European Congress of Radiology-ECR 2012; 2012

  • 153.

    Gutova M, Frank JA, D’Apuzzo M, Khankaldyyan V, Gilchrist MM, Annala AJ, Metz MZ, Abramyants Y, Herrmann KA, Ghoda LY. Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use. Stem Cells Transl Med. 2013;2:766–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 154.

    Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green-synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology. 2020;77:80–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 155.

    Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine. 2015;10:993–1018.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 156.

    Guigou C, Lalande A, Millot N, Belharet K, Bozorg Grayeli A. Use of super paramagnetic iron oxide nanoparticles as drug carriers in brain and ear: state of the art and challenges. Brain Sci. 2021;11:358.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 157.

    Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, Laffon B. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen. 2015;56:125–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 158.

    Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol. 2016;38:53–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 159.

    Kiliç G, Fernández-Bertólez N, Costa C, Brandão F, Teixeira J, Pásaro E, Laffon B, Valdiglesias V. The application, neurotoxicity, and related mechanism of iron oxide nanoparticles. In: Xinguo J, Huile G, editors. Neurotoxicity of nanomaterials and nanomedicine. Cambridge: Academic Press; 2017. p. 127–50.

    Chapter 

    Google Scholar
     

  • 160.

    Macdougall IC. Strategies for iron supplementation: oral versus intravenous. Kidney Int. 1999;55:S61–6.

    Article 

    Google Scholar
     

  • 161.

    Gómez-Ramírez S, Brilli E, Tarantino G, Muñoz M. Sucrosomial® iron: a new generation iron for improving oral supplementation. Pharmaceuticals. 2018;11:97.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 162.

    Das SN, Devi A, Mohanta BB, Choudhury A, Swain A, Thatoi PK. Oral versus intravenous iron therapy in iron deficiency anemia: an observational study. J Family Med Prim Care. 2020;9:3619.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 163.

    Lara Y, Nguyen T, Marilena L, Alexander M. Toxicological considerations of clinically applicable nanoparticles. Nano Today. 2011;6:585–607.

    Article 
    CAS 

    Google Scholar
     

  • 164.

    Nguyen M, Tadi P. Iron Supplementation. StatPearls Publishing, Treasure Island (FL) 2020.


    Google Scholar
     

  • 165.

    Wang C, Graham DJ, Kane RC, Xie D, Wernecke M, Levenson M, MaCurdy TE, Houstoun M, Ryan Q, Wong S. Comparative risk of anaphylactic reactions associated with intravenous iron products. JAMA. 2015;314:2062–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 166.

    Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Nanovectors design for theranostic applications in colorectal cancer. J Oncol. 2019. https://doi.org/10.1155/2019/2740923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A. Superparamagnetic iron oxide nanoparticles—Current and prospective medical applications. Materials. 2019;12:617.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Liu F, Le W, Mei T, Wang T, Chen L, Lei Y, Cui S, Chen B, Cui Z, Shao C. In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@ SiO2 nanoprobe modified with anti-mesothelin antibody. Int J Nanomedicine. 2016;11:2195.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 169.

    Tutkun L, Gunaydin E, Turk M, Kutsal T. Anti-epidermal growth factor receptor aptamer and antibody conjugated SPIONs targeted to breast cancer cells: a comparative approach. J Nanosci Nanotechnol. 2017;17:1681–97.

    CAS 
    Article 

    Google Scholar
     

  • 170.

    Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019. https://doi.org/10.3390/nu11102288.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 171.

    Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016;8:167.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 172.

    Almeida AF, Borge GIA, Piskula M, Tudose A, Tudoreanu L, Valentová K, Williamson G, Santos CN. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr Rev Food Sci Food Saf. 2018;17:714–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 173.

    Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM, Elewa YHA. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9:374.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 174.

    Hong Y-J, Mitchell AE. Identification of glutathione-related quercetin metabolites in humans. Chem Res Toxicol. 2006;19:1525–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 175.

    de Boer VC, Dihal AA, van der Woude H, Arts IC, Wolffram S, Alink GM, Rietjens IM, Keijer J, Hollman PC. Tissue distribution of quercetin in rats and pigs. J Nutr. 2005;135:1718–25.

    PubMed 
    Article 

    Google Scholar
     

  • 176.

    Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem. 2009;1:1643–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 177.

    Ebrahimpour S, Zakeri M, Esmaeili A. Crosstalk between obesity, diabetes, and alzheimer’s disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev. 2020;62:101095.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 178.

    Li Z, Moalin M, Zhang M, Vervoort L, Hursel E, Mommers A, Haenen G. The flow of the redox energy in quercetin during its antioxidant activity in water. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176015.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 179.

    Lesjak M, Balesaria S, Skinner V, Debnam ES, Srai SKS. Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues. Eur J Nutr. 2019;58:743–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 180.

    van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20:331–42.

    PubMed 
    Article 

    Google Scholar
     

  • 181.

    Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019. https://doi.org/10.3390/molecules24061123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 182.

    El-Sayed EHK, Mohammed ZA, Ahmed MM. Ameliorative role of quercetin in iron overload induced heart and brain toxicity in adult male albino rats. J Toxicol Environ Health Sci. 2019;11:16–26.


    Google Scholar
     

  • 183.

    Hershko C. Oral iron chelators: new opportunities and new dilemmas. Haematologica. 2006;91:1307–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 184.

    Liu Z, Hider R. Design of iron chelators with therapeutic application. Coord Chem Rev. 2002;232:151–71.

    CAS 
    Article 

    Google Scholar
     

  • 185.

    Ward RJ, Dexter D, Florence A, Aouad F, Hider R, Jenner P, Crichton RR. Brain iron in the ferrocene-loaded rat: Its chelation and influence on dopamine metabolism. Biochem Pharmacol. 1995;49:1821–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 186.

    Cheng IF, Breen K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the fenton reaction of the iron-ATP complex. Biometals. 2000;13:77–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 187.

    Escandar G, Sala L. Complexing behavior of rutin and quercetin. Can J Chem. 2011;69:1994–2001.

    Article 

    Google Scholar
     

  • 188.

    Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res. 2002;36:1199–208.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 189.

    Ren J, Meng S, Lekka CE, Kaxiras E. Complexation of flavonoids with iron: structure and optical signatures. J Phys Chem B. 2008;112:1845–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 190.

    Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5:45853–77.

    CAS 
    Article 

    Google Scholar
     

  • 191.

    Horniblow RD, Henesy D, Iqbal TH, Tselepis C. Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. Mol Nutr Food Res. 2017. https://doi.org/10.1002/mnfr.201600692.

    Article 
    PubMed 

    Google Scholar
     

  • 192.

    Baccan MM, Chiarelli-Neto O, Pereira RM, Esposito BP. Quercetin as a shuttle for labile iron. J Inorg Biochem. 2012;107:34–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 193.

    Afanas’ev IB, Dorozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol. 1989;38:1763–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 194.

    Lesjak M, Hoque R, Balesaria S, Skinner V, Debnam ES, Srai SK, Sharp PA. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro. PLoS ONE. 2014;9:e102900.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 195.

    Guo M, Perez C, Wei Y, Rapoza E, Su G, Bou-Abdallah F, Chasteen ND. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007. https://doi.org/10.1039/b705136k.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 196.

    Vlachodimitropoulou E, Sharp PA, Naftalin RJ. Quercetin-iron chelates are transported via glucose transporters. Free Radic Biol Med. 2011;50:934–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 197.

    Flora SJS. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2009;2:191–206.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 198.

    Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem. 2009;74:2699–709.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 199.

    Vásquez-Espinal A, Yañez O, Osorio E, Areche C, García-Beltrán O, Ruiz LM, Cassels BK, Tiznado W. Theoretical study of the antioxidant activity of quercetin oxidation products. Front Chem. 2019. https://doi.org/10.3389/fchem.2019.00818.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 200.

    Zheng Y-Z, Deng G, Liang Q, Chen D-F, Guo R, Lai R-C. Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep. 2017;7:7543–7543.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 201.

    Liang N, Kitts D. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules (Basel, Switzerland). 2014;19:19180–208.

    Article 
    CAS 

    Google Scholar
     

  • 202.

    Markovic Z, Amic D, Milenkovic D, Dimitric-Markovic JM, Markovic S. Examination of the chemical behavior of the quercetin radical cation towards some bases. Phys Chem Chem Phys. 2013;15:7370–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 203.

    Amorati R, Baschieri A, Cowden A, Valgimigli L. The antioxidant activity of quercetin in water solution. Biomimetics (Basel). 2017. https://doi.org/10.3390/biomimetics2030009.

    Article 

    Google Scholar
     

  • 204.

    Agrawal PK, Schneider H-J. Deprotonation induced 13 C NMR shifts in phenols and flavonoids. Tetrahedron Lett. 1983;24:177–80.

    CAS 
    Article 

    Google Scholar
     

  • 205.

    Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med. 1999;26:107–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 206.

    Heijnen CG, Haenen GR, Oostveen RM, Stalpers EM, Bast A. Protection of flavonoids against lipid peroxidation: the structure activity relationship revisited. Free Radic Res. 2002;36:575–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 207.

    Altamura S, Galy B. Radical sensing keeps noxious iron at bay. Nat Metab. 2019;1:501–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 208.

    Sarkar A, Sil PC. Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: role of quercetin. Food Chem Toxicol. 2014;71:106–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 209.

    Ebrahimpour S, Shahidi SB, Abbasi M, Tavakoli Z, Esmaeili A. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats. Sci Rep. 2020;10:15957.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 210.

    Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017. https://doi.org/10.3390/nu9070671.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 211.

    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 212.

    Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20102407.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 213.

    Xie ZZ, Liu Y, Bian JS. Hydrogen sulfide and cellular redox homeostasis. Oxid Med Cell Longev. 2016;2016:6043038.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 214.

    Dong YS, Wang JL, Feng DY, Qin HZ, Wen H, Yin ZM, Gao GD, Li C. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int J Med Sci. 2014;11:282–90.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 215.

    Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med. 2009;46:443–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 216.

    Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2019;54:287–93.

    Article 

    Google Scholar
     

  • 217.

    Magalingam KB, Radhakrishnan AK, Haleagrahara N. Protective mechanisms of flavonoids in Parkinson’s disease. Oxid Med Cell Longev. 2015;2015:314560.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 218.

    Dong Y, Hou Q, Lei J, Wolf PG, Ayansola H, Zhang B. Quercetin alleviates intestinal oxidative damage induced by H2O2 via modulation of GSH. In vitro screening and in vivo evaluation in a colitis model of mice. ACS Omega. 2020;5:8334–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 219.

    Kobori M, Takahashi Y, Akimoto Y, Sakurai M, Matsunaga I, Nishimuro H, Ippoushi K, Oike H, Ohnishi-Kameyama M. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. J Fun Foods. 2015;15:551–60.

    CAS 
    Article 

    Google Scholar
     

  • 220.

    Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radical Biol Med. 2001;30:433–46.

    CAS 
    Article 

    Google Scholar
     

  • 221.

    Liu Y, Guo M. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Molecules. 2015;20:8583–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 222.

    Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134–45.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 223.

    Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta. 2008;1780:819–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 224.

    Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.01383.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 225.

    Liu Y, Gong Y, Xie W, Huang A, Yuan X, Zhou H, Zhu X, Chen X, Liu J, Liu J, Qin X. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale. 2020;12:6498–511.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 226.

    Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer’s disease. J Nutr Biochem. 2009;20:269–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 227.

    Zhu M, Han S, Fink AL. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim Biophys Acta. 2013;1830:2872–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 228.

    Sriraksa N, Wattanathorn J, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol K. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med. 2012;2012:823206.

    PubMed 
    Article 

    Google Scholar
     

  • 229.

    Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett. 2011;500:139–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 230.

    Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem. 2017;141:766–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 231.

    Ries V, Henchcliffe C, Kareva T, Rzhetskaya M, Bland R, During M, Kholodilov N, Burke R. Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s disease. Proc Natl Acad Sci USA. 2006;103:18757–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 232.

    Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience. 2013;236:136–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 233.

    Zhang ZJ, Cheang LC, Wang MW, Lee SM. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med. 2011;27:195–203.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 234.

    Park DJ, Shah FA, Koh PO. Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model. J Vet Med Sci. 2018;80:676–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 235.

    Lee JK, Kwak HJ, Piao MS, Jang JW, Kim SH, Kim HS. Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir (Wien). 2011;153:1321–9 (discussion 1329).

    Article 

    Google Scholar
     

  • 236.

    Cho JY, Kim IS, Jang YH, Kim AR, Lee SR. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett. 2006;404:330–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 237.

    Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq M, Ahmad ME, Safhi MM, Islam F. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res. 2011;36:1360–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 238.

    Qu X, Qi D, Dong F, Wang B, Guo R, Luo M, Yao R. Quercetin improves hypoxia-ischemia induced cognitive deficits via promoting remyelination in neonatal rat. Brain Res. 2014;1553:31–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 239.

    Pei B, Yang M, Qi X, Shen X, Chen X, Zhang F. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway. Biochem Biophys Res Commun. 2016;478:199–205.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 240.

    Chen BH, Park JH, Ahn JH, Cho JH, Kim IH, Lee JC, Won MH, Lee CH, Hwang IK, Kim JD, et al. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neural Regen Res. 2017;12:220–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 241.

    Leonardo CC, Dore S. Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr Neurosci. 2011;14:226–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 242.

    Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38:3280–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 243.

    Zhang Y, Yi B, Ma J, Zhang L, Zhang H, Yang Y, Dai Y. Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochem Res. 2015;40:195–203.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 244.

    Lei X, Chao H, Zhang Z, Lv J, Li S, Wei H, Xue R, Li F, Li Z. Neuroprotective effects of quercetin in a mouse model of brain ischemic/reperfusion injury via anti-apoptotic mechanisms based on the Akt pathway. Mol Med Rep. 2015. https://doi.org/10.3892/mmr.2015.3857.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 245.

    Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315:C343–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 246.

    Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT. Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:73–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 247.

    Jin Z, Ke J, Guo P, Wang Y, Wu H. Quercetin improves blood-brain barrier dysfunction in rats with cerebral ischemia reperfusion via Wnt signaling pathway. Am JTransl Res. 2019;11:4683–95.

    CAS 

    Google Scholar
     

  • 248.

    Yarjanli Z, Ghaedi K, Esmaeili A, Zarrabi A, Rahgozar S. The antitoxic effects of quercetin and quercetin-conjugated iron oxide nanoparticles (QNPs) against H2O2-induced toxicity in PC12 cells. Int J Nanomedicine. 2019;14:6813–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 249.

    Ebrahimpour S, Esmaeili A, Beheshti S. Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine. 2018;13:6311–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 250.

    Katebi S, Esmaeili A, Ghaedi K, Zarrabi A. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine. 2019;14:2157.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 251.

    Cruz IF, Freire C, Araújo JP, Pereira C, Pereira AM. Multifunctional ferrite nanoparticles: from current trends toward the future. In: El-Gendy AA, Barandiarán JM, Hadimani RL, editors. Magnetic nanostructured materials. Amsterdam: Elsevier; 2018. p. 59–116.

    Chapter 

    Google Scholar
     

  • 252.

    Ali A, Hira Zafar MZ, Haq Ul I, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appli. 2016;9:49.

    CAS 
    Article 

    Google Scholar
     

  • 253.

    Ebrahimpour S, Esmaeili A, Dehghanian F, Beheshti S. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-κB pathway. Sci Rep. 2020;10:1–14.

    Article 
    CAS 

    Google Scholar
     

  • 254.

    Dini S, Zakeri M, Ebrahimpour S, Dehghanian F, Esmaeili A. Quercetin-conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats. Sci Rep. 2021;11:1–11.

    Article 
    CAS 

    Google Scholar
     

  • 255.

    Jajin EA, Esmaeili A, Rahgozar S, Noorbakhshnia M. Quercetin-conjugated superparamagnetic iron oxide nanoparticles protect AlCl3-induced neurotoxicity in a rat model of Alzheimer’s disease via antioxidant genes, APP gene, and miRNA-101. Front Neurosci. 2020. https://doi.org/10.3389/fnins.2020.598617.

    Article 

    Google Scholar
     

  • 256.

    Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A, Hofmann H, Juillerat-Jeanneret L. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther. 2006;318:108–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 257.

    Ansari S, Ficiara E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’Agata F. Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel). 2019. https://doi.org/10.3390/ma12030465.

    Article 

    Google Scholar
     

  • 258.

    Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, Desboeufs K, Michel A, Pellegrino T, Lalatonne Y, Wilhelm C. Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano. 2016;10:7627–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 259.

    Volatron J, Carn F, Kolosnjaj-Tabi J, Javed Y, Vuong QL, Gossuin Y, Ménager C, Luciani N, Charron G, Hémadi M, et al. Ferritin protein regulates the degradation of iron oxide nanoparticles. Small. 2017. https://doi.org/10.1002/smll.201602030.

    Article 
    PubMed 

    Google Scholar
     

  • 260.

    Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 261.

    Pongrac IM, Pavicic I, Milic M, Brkic Ahmed L, Babic M, Horak D, Vinkovic Vrcek I, Gajovic S. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2016;11:1701–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 262.

    Gholampour F, Saki N. Hepatic and renal protective effects of quercetin in ferrous sulfate-induced toxicity. Gen Physiol Biophys. 2019;38:27–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 263.

    Zhang Y, Gao Z, Liu J, Xu Z. Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues. Nat Prod Res. 2011;25:1150–60.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 264.

    El-Sheikh AA, Ameen SH, AbdEl-Fatah SS. Ameliorating iron overload in intestinal tissue of adult male rats: quercetin vs deferoxamine. J Toxicol. 2018. https://doi.org/10.1155/2018/8023840.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 265.

    Pişkin Ö, Aydın BG, Baş Y, Karakaya K, Can M, Elmas Ö, Büyükuysal MÇ. Protective effects of quercetin on intestinal damage caused by ionizing radiation. 2018.

  • 266.

    Jafarinia M, Sadat Hosseini M, Kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M, Eskandari N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin Immunol. 2020;16:1–11.

    Article 
    CAS 

    Google Scholar
     

  • 267.

    Kontoghiorghes GJ, Kontoghiorghe CN. Iron and chelation in biochemistry and medicine: new approaches to controlling iron metabolism and treating related diseases. Cells. 2020. https://doi.org/10.3390/cells9061456.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 268.

    Kosyakovsky J, Fine JM, Frey WH 2nd, Hanson LR. Mechanisms of intranasal deferoxamine in neurodegenerative and neurovascular disease. Pharmaceuticals (Basel). 2021. https://doi.org/10.3390/ph14020095.

    Article 

    Google Scholar
     

  • 269.

    Ronan JL, Kadi N, McMahon SA, Naismith JH, Alkhalaf LM, Challis GL. Desferrioxamine biosynthesis: diverse hydroxamate assembly by substrate-tolerant acyl transferase DesC. Philos Trans R Soc Lond B Biol Sci. 2018. https://doi.org/10.1098/rstb.2017.0068.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 270.

    Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med. 2011;364:146–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 271.

    Kwiatkowski JL. Management of transfusional iron overload—differential properties and efficacy of iron chelating agents. J Blood Med. 2011;2:135–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 272.

    Bayanzay K, Alzoebie L. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives. J Blood Med. 2016;7:159–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 273.

    Porter JB, Rafique R, Srichairatanakool S, Davis BA, Shah FT, Hair T, Evans P. Recent insights into interactions of deferoxamine with cellular and plasma iron pools: implications for clinical use. Ann NY Acad Sci. 2005;1054:155–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 274.

    Fine JM, Renner DB, Forsberg AC, Cameron RA, Galick BT, Le C, Conway PM, Stroebel BM, Frey WH 2nd, Hanson LR. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 275.

    Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC, Ergul A. Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis. Transl Stroke Res. 2020. https://doi.org/10.1007/s12975-020-00844-7.

    Article 
    PubMed 

    Google Scholar
     

  • 276.

    Keikhaei B, Farmani-Anooshe N, Bahadoram M, Mahmoudian-Sani M-R, Alikhani K, Helalinasab A. An overview of complications associated with deferoxamine therapy in thalassemia. J Nephropharmacol. 2020;10:e05–e05.

    Article 
    CAS 

    Google Scholar
     

  • 277.

    Di Nicola M, Barteselli G, Dell’Arti L, Ratiglia R, Viola F. Functional and structural abnormalities in deferoxamine retinopathy: a review of the literature. Biomed Res Int. 2015;2015:249617.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 278.

    Greenberg PL, Rigsby CK, Stone RM, Deeg HJ, Gore SD, Millenson MM, Nimer SD, O’Donnell MR, Shami PJ, Kumar R. NCCN task force: transfusion and iron overload in patients with myelodysplastic syndromes. J Natl Compr Canc Netw. 2009;7(Suppl 9):S1-16.

    PubMed 
    Article 

    Google Scholar
     

  • 279.

    Tanaka C. Clinical pharmacology of deferasirox. Clin Pharmacokinet. 2014;53:679–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 280.

    Banerjee P, Sahoo A, Anand S, Bir A, Chakrabarti S. The oral iron chelator, deferasirox, reverses the age-dependent alterations in iron and amyloid-beta homeostasis in rat brain: implications in the therapy of Alzheimer’s disease. J Alzheimers Dis. 2016;49:681–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 281.

    Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, Della Corte L, Ward RJ, Crichton RR. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm (Vienna). 2011;118:223–31.

    CAS 
    Article 

    Google Scholar
     

  • 282.

    Imai T, Tsuji S, Matsubara H, Ohba T, Sugiyama T, Nakamura S, Hara H, Shimazawa M. Deferasirox, a trivalent iron chelator, ameliorates neuronal damage in hemorrhagic stroke models. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:73–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 283.

    Vichinsky E, Onyekwere O, Porter J, Swerdlow P, Eckman J, Lane P, Files B, Hassell K, Kelly P, Wilson F, et al. A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol. 2007;136:501–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 284.

    Kontoghiorghes GJ, Neocleous K, Kolnagou A. Benefits and risks of deferiprone in iron overload in thalassaemia and other conditions. Drug Saf. 2003;26:553–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 285.