Sunday, June 26, 2022
HomeNanotechnologyQuantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum expertise

Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum expertise


  • 1.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Senellart, P., Solomon, G. & White, A. G. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020). Scalable implementation of single-photon sources, providing a route to realizing quantum advantage.

    Article 

    Google Scholar
     

  • 6.

    Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 8.

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015). Demonstration of transform-limited photon emission with a quantum dot source.

    Article 

    Google Scholar
     

  • 11.

    Pedersen, F. T. et al. Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide. ACS Photon. 7, 2343–2349 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Dreeßen, C. L. et al. Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides. Quantum Sci. Technol. 4, 015003 (2018).

    Article 

    Google Scholar
     

  • 13.

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Huthmacher, L. et al. Coherence of a dynamically decoupled quantum-dot hole spin. Phys. Rev. B 97, 241413 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nat. Photon. 5, 702–708 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Krizek, F. et al. Field effect enhancement in buffered quantum nanowire networks. Phys. Rev. Mater. 2, 093401 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Shaikh, F. K., Zeadally, S. & Exposito, E. Enabling technologies for green internet of things. IEEE Syst. J. 11, 983–994 (2015).

    Article 

    Google Scholar
     

  • 24.

    Morley, J., Widdicks, K. & Hazas, M. Digitalisation, energy and data demand: the impact of internet traffic on overall and peak electricity consumption. Energy Res. Soc. Sci. 38, 128–137 (2018).

    Article 

    Google Scholar
     

  • 25.

    Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Antón, C. et al. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica 6, 1471–1477 (2019).

    Article 

    Google Scholar
     

  • 29.

    Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Zanin, G. L. et al. Fiber-compatible photonic feed-forward with 99% fidelity. Opt. Express 29, 3425–3437 (2021).

    Article 

    Google Scholar
     

  • 31.

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Cohen, J. D., Meenehan, S. M. & Painter, O. Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction. Opt. Express 21, 11227–11236 (2013).

    Article 

    Google Scholar
     

  • 33.

    Ding, Y., Peucheret, C., Ou, H. & Yvind, K. Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency. Opt. Lett. 39, 5348–5350 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Tiecke, T. G. et al. Efficient fiber-optical interface for nanophotonic devices. Optica 2, 70–75 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source. Laser Photon. Rev. 11, 1600297 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 36.

    Papon, C. et al. Nanomechanical single-photon routing. Optica 6, 524–530 (2019). Demonstration of single-photon routing with ultra-low-loss nanomechanical transducer.

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Li, G. et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20, 12035–12039 (2012).

    Article 

    Google Scholar
     

  • 39.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Haffner, C. et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science 366, 860–864 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Seok, T. J., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. Wafer-scale silicon photonic switches beyond die size limit. Optica 6, 490–494 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 46.

    Elshaari, A. W. et al. Strain-tunable quantum integrated photonics. Nano Lett. 18, 7969–7976 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Zhou, X. et al. On-chip nanomechanical filtering of quantum-dot single-photon sources. Laser Photon. Rev. 14, 1900404 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 48.

    Li, H. et al. Multispectral superconducting nanowire single photon detector. Opt. Express 27, 4727–4733 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun. 3, 867 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 50.

    Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23–26 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon. Rev. 12, 1800149 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 53.

    Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica 6, 563–569 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673 – 2692 (2020).


    Google Scholar
     

  • 55.

    Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).

    Article 

    Google Scholar
     

  • 56.

    Zhang, W. et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz. IEEE Trans. Appl. Supercond. 29, 2200204 (2019).

    CAS 

    Google Scholar
     

  • 57.

    Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Zhu, D. et al. A scalable multi-photon coincidence detector based on superconducting nanowires. Nat. Nanotechnol. 13, 596–601 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015). Realization of programmable universal photonic-integrated circuit for quantum photonics.

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015). Proposal of architecture for realising universal photonic cluster state with single-photon sources.

    Article 
    CAS 

    Google Scholar
     

  • 64.

    Zhang, Q. et al. Demonstration of a scheme for the generation of ‘event-ready’ entangled photon pairs from a single-photon source. Phys. Rev. A 77, 062316 (2008).

    Article 
    CAS 

    Google Scholar
     

  • 65.

    Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article 
    CAS 

    Google Scholar
     

  • 66.

    Barz, S., Cronenberg, G., Zeilinger, A. & Walther, P. Heralded generation of entangled photon pairs. Nat. Photon. 4, 553–556 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Li, J.-P. et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett. 126, 140501 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Salter, C. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Basset, F. B. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).

    CAS 

    Google Scholar
     

  • 70.

    Prilmüller, M. et al. Hyperentanglement of photons emitted by a quantum dot. Phys. Rev. Lett. 121, 110503 (2018).

    Article 

    Google Scholar
     

  • 71.

    Sheng, Y.-B. & Deng, F.-G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010).

    Article 
    CAS 

    Google Scholar
     

  • 72.

    Gershoni, D. A quantum knitting machine generating on demand cluster states of entangled photons. In Conference on Lasers and Electro-Optics (CLEO) FTu3H–3 (Optical Society of America, 2018).

  • 73.

    Gao, W., Fallahi, P., Togan, E., Miguel-Sánchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 74.

    Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016). Demonstration of multi-photon entanglement with a quantum dot source.

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Tiurev, K. et al. High-fidelity multi-photon-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Preprint at https://arxiv.org/abs/2007.09295 (2020).

  • 76.

    Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    Article 
    CAS 

    Google Scholar
     

  • 78.

    Pichler, H., Choi, S., Zoller, P. & Lukin, M. D. Universal photonic quantum computation via time-delayed feedback. Proc. Natl Acad. Sci. USA 114, 11362–11367 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 79.

    Mahmoodian, S., Lodahl, P. & Sørensen, A. S. Quantum networks with chiral-light–matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).

    Article 

    Google Scholar
     

  • 80.

    Le Jeannic, H. et al. Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide. Phys. Rev. Lett. 126, 023603 (2021).

    Article 

    Google Scholar
     

  • 81.

    Javadi, A. et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol. 13, 398–403 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 82.

    Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article 

    Google Scholar
     

  • 84.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article 

    Google Scholar
     

  • 85.

    Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    Article 
    CAS 

    Google Scholar
     

  • 86.

    Kołodyński, J. et al. Device-independent quantum key distribution with single-photon sources. Quantum 4, 260 (2020).

    Article 

    Google Scholar
     

  • 87.

    Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).

    Article 

    Google Scholar
     

  • 88.

    Liu, Y. et al. Device-independent quantum random-number generation. Nature 562, 548–551 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 89.

    Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).

    Article 

    Google Scholar
     

  • 90.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 91.

    Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 92.

    Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    Article 

    Google Scholar
     

  • 93.

    Fowler, A. G. et al. Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010).

    Article 
    CAS 

    Google Scholar
     

  • 94.

    Buterakos, D., Barnes, E. & Economou, S. E. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X 7, 041023 (2017).


    Google Scholar
     

  • 95.

    Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020). Proposal of a one-way quantum repeater based on deterministic photon-emitter interfaces.

    CAS 

    Google Scholar
     

  • 96.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 97.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar
     

  • 98.

    Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018). Proof-of-concept quantum simulation of vibrational dynamics with single photons.

    CAS 
    Article 

    Google Scholar
     

  • 99.

    Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 100.

    Henriksen, N. E. & Hansen, F. Y. Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics (Oxford Univ. Press, 2018).

  • 101.

    Cao, Y., Romero, J. & Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62, 6:1–6:20 (2018).

    Article 

    Google Scholar
     

  • 102.

    Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 103.

    Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 104.

    Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).

    Article 

    Google Scholar
     

  • 105.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 106.

    Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005). Proof-of-concept demonstration of one-way quantum computing.

    CAS 
    Article 

    Google Scholar
     

  • 107.

    Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and qnd detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 108.

    Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 109.

    Akopian, N., Wang, L., Rastelli, A., Schmidt, O. & Zwiller, V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photon. 5, 230–233 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 110.

    Meyer, H. M. et al. Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 111.

    Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 112.

    Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 114.

    Elfving, V. E., Das, S. & Sørensen, A. S. Enhancing quantum transduction via long-range waveguide-mediated interactions between quantum emitters. Phys. Rev. A 100, 053843 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 115.

    Hummel, T. et al. Efficient demultiplexed single-photon source with a quantum dot coupled to a nanophotonic waveguide. Appl. Phys. Lett. 115, 021102 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 116.

    Palacios-Berraquero, C., Mueck, L. & Persaud, D. M. Instead of ‘supremacy’ use ‘quantum advantage’. Nature 576, 213 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 117.

    Preskill, J. Quantum entanglement and quantum computing. In Proc. 25th Solvay Conference on Physics (ed. Gross, D., Henneaux, M. & Sevrin, A.) 63–80 (World Scientific, 2013).

  • 118.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 119.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  • 120.

    Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020). Photonic boson sampling experiment demonstrating quantum advantage with squeezed light sources.

    CAS 
    Article 

    Google Scholar
     

  • 121.

    Shchesnovich, V. S. Tight bound on the trace distance between a realistic device with partially indistinguishable bosons and the ideal boson sampling. Phys. Rev. A 91, 063842 (2015).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments