Friday, October 7, 2022
HomeNanotechnologyGinsenosides rising as each bifunctional medicine and nanocarriers for enhanced antitumor therapies...

Ginsenosides rising as each bifunctional medicine and nanocarriers for enhanced antitumor therapies | Journal of Nanobiotechnology


  • 1.

    Song X, Liu C, Wang N, Huang H, He S, Gong C, et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. 2021;168:158–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    He L, Qin X, Fan D, Feng C, Wang Q, Fang J. Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis. ACS Appl Mater Interfaces. 2021;13(18):21076–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Javed R, Zia M, Naz S, Aisida SO, Ul Ain N, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol. 2020;18:172.

    Article 

    Google Scholar
     

  • 4.

    Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA. Minireview: Nanoparticles and the Immune System. Endocrinology. 2010;151(2):458–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:17.

    Article 
    CAS 

    Google Scholar
     

  • 7.

    Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A Meyer Food Funct. 2021;12(2):494–518.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci. 2001;16:S28–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Yang FF, Zhou J, Hu X, Yu SK, Liu CY, Pan RL, et al. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2. Drug Deliv Transl Res. 2017;7(5):731–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Zhang EY, Shi HL, Yang L, Wu XJ, Wang ZT. Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth. Oncol Rep. 2017;38(1):359–67.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 11.

    Paek IP, Moon Y, Kim J, Ji HY, Kim SA, Sohn DH, et al. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos. 2006;27(1):39–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Pan LL, Zhang TT, Sun HY, Liu GR. Ginsenoside Rg3 (Shenyi Capsule) combined with chemotherapy for digestive system cancer in china: a meta-analysis and systematic review. Evid-based Complement Altern Med. 2019;2019:2417418.


    Google Scholar
     

  • 13.

    Jin L, Xu M, Luo XH, Zhu XF. Stephania Tetrandra and Ginseng-containing chinese herbal formulation NSENL reverses cisplatin resistance in lung cancer xenografts. Am J Chin Med. 2017;45(2):385–401.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Zhang JW, Zhou F, Wu XL, Zhang XX, Chen YC, Zha BS, et al. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20 (S)-ginsenoside Rh2 in MCF-7/Adr cells. Br J Pharmacol. 2012;165(1):120–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Park JD, Rhee DK, Lee YH. Biological Activities and Chemistry of Saponins from Panax ginseng C. A Meyer Phytochem Rev. 2005;4(2–3):159–75.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Chen JX, Peng HM, Xi OY, He XY. Research on the antitumor effect of ginsenoside Rg3 in B16 melanoma cells. Melanoma Res. 2008;18(5):322–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, et al. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol. 2009;47(9):2257–68.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    He BC, Gao JL, Luo XJ, Luo JY, Shen JK, Wang LY, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/beta-catenin signaling. Int J Oncol. 2011;38(2):437–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Vijayakumar A, Baskaran R, Maeng HJ, Yoo BK. Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier. Arch Pharm Res. 2017;40(7):864–74.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 20.

    Selvaraj K, Yoo BK. Curcumin-loaded nanostructured lipid carrier modified with partially hydrolyzed ginsenoside. AAPS PharmSciTech. 2019;20:252.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Tao C, Zhang JJ, Wang JX, Le Y. Ginsenoside drug nanocomposites prepared by the aerosol solvent extraction system for enhancing drug solubility and stability. Pharmaceutics. 2018;10(3):95.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Zhang W, Wang XY, Zhang M, Xu M, Tang WY, Zhang Y, et al. Intranasal delivery of microspheres loaded with 20 (R)-ginsenoside Rg3 enhances anti-fatigue effect in mice. Curr Drug Deliv. 2017;14(6):867–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Kim H, Lee JH, Kim JE, Kim YS, Ryu CH, Lee HJ, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res. 2018;42(3):361–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Lu JM, Yao QZ, Chen CY. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol. 2009;7(3):293–302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Hong C, Liang JM, Xia JX, Zhu Y, Guo YZ, Wang AN, et al. One stone four birds: a novel liposomal delivery system multi-functionalized with ginsenoside Rh2 for tumor targeting therapy. Nano-Micro Lett. 2020;12:129.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Hong C, Wang D, Liang JM, Guo YZ, Zhu Y, Xia JX, et al. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics. 2019;9(15):4437–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Wang X, Zheng WW, Shen Q, Wang YH, Tseng YJ, Luo ZG, et al. Identification and construction of a novel biomimetic delivery system of paclitaxel and its targeting therapy for cancer. Signal Transduct Tar. 2021;6:33.

    Article 

    Google Scholar
     

  • 28.

    Zhu Y, Liang JM, Gao CF, Wang AN, Xia JX, Hong C, et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release. 2021;330:641–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang RW. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol. 2012;3:25.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main Ginseng saponin metabolites formed by intestinal bacteria. Planta Med. 1996;62(5):453–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 31.

    Tang W, Zhang Y, Gao J, Ding X, Gao S. The Anti-fatigue Effect of 20 (R)-Ginsenoside Rg3 in Mice by Intranasally Administration. Biol Pharm Bull. 2008;31(11):2024–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 32.

    Hurh J, Markus J, Kim YJ, Ahn S, Castro-Aceituno V, Mathiyalagan R, et al. Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies. J Nanopart Res. 2017;19(9):313.

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Jeon JH, Lee J, Choi MK, Song IS. Pharmacokinetics of ginsenosides following repeated oral administration of red ginseng extract significantly differ between species of experimental animals. Arch Pharm Res. 2020;43(12):1335–46.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Piao XM, Zhang H, Kang JP, Yang DU, Li YL, Pang SF, et al. Advances in Saponin Diversity ofPanax ginseng. Molecules. 2020;25(15):3452.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb-1 and Rg (1) from Panax notoginseng in rats. J Ethnopharmacol. 2003;84(2–3):187–92.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 36.

    Xie HT, Wang GJ, Sun JG, Tucker I, Zhao XC, Xie YY, et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies. J Chromatogr B. 2005;818(2):167–73.

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Li XY, Sun JG, Wang GJ, Hao HP, Liang Y, Zheng YT, et al. Simultaneous determination of panax notoginsenoside R1, ginsenoside Rg1, Rd, Re and Rb1 in rat plasma by HPLC/ESI/MS: platform for the pharmacokinetic evaluation of total panax notoginsenoside, a typical kind of multiple constituent traditional Chinese medicine. Biomed Chromatogr. 2007;21(7):735–46.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 38.

    Han M, Fang XL. Difference in oral absorption of ginsenoside Rg (1) between in vitro and in vivo models. Acta Pharmacol Sin. 2006;27(4):499–505.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Lai L, Hao HP, Liu YT, Zheng CN, Wang Q, Wang GJ, et al. Characterization of Pharmacokinetic Profiles and Metabolic Pathways of 20 (S)-Ginsenoside Rh1 in vivo and in vitro. Planta Med. 2009;75(8):797–802.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 40.

    Li BQ, Qu GF. Inhibition of the hypoxia-induced factor-1 alpha and vascular endothelial growth factor expression through ginsenoside Rg3 in human gastric cancer cells. J Cancer Res Ther. 2019;15(7):1642–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 41.

    Meng LB, Ji R, Dong XM, Xu XC, Xin Y, Jiang X. Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways. Int J Oncol. 2019;54(6):2069–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Chen JM, Zhang XJ, Liu XX, Zhang C, Shang WY, Xue J, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol. 2019;856:172418.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Zhao M, Xie J, Shen H, Wang X, Wu Q, Xia L. Role of endothelial-microparticles and the tissue factor pathway in ginsenoside Rb1-mediated prevention of umbilical vein endothelial cell injury. Biomed Rep. 2021;14(1):8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Liu HB, Lu XY, Hu Y, Fan XH. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res. 2020;161:105263.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 45.

    Chen YY, Zhang YQ, Song W, Zhang Y, Dong X, Tan MQ. Ginsenoside Rh2 Improves the Cisplatin Anti-tumor Effect in Lung Adenocarcinoma A549 Cells via Superoxide and PD-L1. Anti-Cancer Agent Me. 2020;20(4):495–503.

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Lu S, Zhang YB, Li HJ, Zhang J, Ci YQ, Han M. Ginsenoside Rb1 can ameliorate the key inflammatory cytokines TNF-alpha and IL-6 in a cancer cachexia mouse model. Bmc Complement Med. 2020;20:11.

    Article 

    Google Scholar
     

  • 47.

    Yang XL, Zou J, Cai HY, Huang XL, Yang XF, Guo DX, et al. Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBP beta/NF-kappa B signaling. Biomed Pharmacother. 2017;96:1240–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 48.

    Li JL, Qi YX. Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1. Exp Mol Pathol. 2019;106:131–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kim AD, Kang KA, Kim HS, Kim DH, Choi YH, Lee SJ, et al. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 2013;4:e750.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, et al. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity. Int J Oncol. 2013;43(6):1907–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Lee IK, Kang KA, Lim CM, Kim KC, Kim HS, Kim DH, et al. Compound K, a Metabolite of Ginseng Saponin, Induces Mitochondria-Dependent and Caspase-Dependent Apoptosis via the Generation of Reactive Oxygen Species in Human Colon Cancer Cells. Int J Mol Sci. 2010;11(12):4916–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Han S, Jeong AJ, Yang H, Bin Kang K, Lee H, Yi EH, et al. Ginsenoside 20 (S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J Ethnopharmacol. 2016;194:83–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Liu GW, Liu YH, Jiang GS, Ren WD. The reversal effect of Ginsenoside Rh2 on drug resistance in human colorectal carcinoma cells and its mechanism. Hum Cell. 2018;31(3):189–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Jang HJ, Han IH, Kim YJ, Yamabe N, Lee D, Hwang GS, et al. Anticarcinogenic effects of products of heat-processed ginsenoside re, a major constituent of ginseng berry, on human gastric cancer cells. J Agr Food Chem. 2014;62(13):2830–6.

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Lyu X, Xu XD, Song AL, Guo JY, Zhang YW, Zhang YC. Ginsenoside Rh1 inhibits colorectal cancer cell migration and invasion in vitro and tumor growth in vivo. Oncol Lett. 2019;18(4):4160–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Liu YN, Fan DD. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol. 2019;168:285–304.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Yuan ZG, Jiang H, Zhu XH, Liu XG, Li JH. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-kappa B signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother. 2017;89:227–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 58.

    Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G (1) phase cell cycle arrest in human breast cancer cells is caused by p15 (Ink4B) and p27 (Kip1)-dependent Inhibition of Cyclin-dependent Kinases. Pharm Res-Dordr. 2009;26(10):2280–8.

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Jin Y, Huynh DTN, Nguyen TLL, Jeon H, Heo KS. Therapeutic effects of ginsenosides on breast cancer growth and metastasis. Arch Pharm Res. 2020;43(8):773–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    Liu YN, Fan DD. The Preparation of Ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K. Nutrients. 2020;12(1):246.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Liu YN, Fan DD. Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct. 2018;9(11):5513–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Zhang GD, He LX, Chen JH, Xu BT, Mao ZJ. Ginsenoside Rh2 activates alpha-catenin phosphorylation to inhibit lung cancer cell proliferation and invasion. Exp Ther Med. 2020;19(4):2913–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Song LX, Yang F, Wang ZT, Yang L, Zhou Y. Ginsenoside Rg5 inhibits cancer cell migration by inhibiting the nuclear factor-kappa B and erythropoietin-producing hepatocellular receptor A2 signaling pathways. Oncol Lett. 2021;21(6):452.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Wang M, Yan SJ, Zhang HT, Li N, Liu T, Zhang YL, et al. Ginsenoside Rh2 enhances the antitumor immunological response of a melanoma mice model. Oncol Lett. 2017;13(2):681–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Wang CZ, Aung HH, Ni M, Wu JA, Tong RB, Wicks S, et al. Red American ginseng: Ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med. 2007;73(7):669–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Liu WK, Xu SX, Che CT. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 2000;67(11):1297–306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Oh M, Choi YH, Choi SH, Chung YH, Kim KW, Kim SI, et al. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int J Oncol. 1999;14(5):869–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Kang KA, Kim YW, Kim SU, Chae S, Koh YS, Kim HS, et al. G (1) phase arrest of the cell cycle by a ginseng metabolite, compound K, in U937 human monocytic leukamia cells. Arch Pharm Res. 2005;28(6):685–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 69.

    Wu WS, Zhou Q, Zhao WJ, Gong YP, Su AP, Liu F, et al. Ginsenoside Rg3 inhibition of thyroid cancer metastasis is associated with alternation of actin skeleton. J Med Food. 2018;21(9):849–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Li HL, Huang N, Zhu WK, Wu JC, Yang XH, Teng WJ, et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer. 2018;18:579.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 71.

    Park EK, Lee EJ, Lee SH, Koo KH, Sung JY, Hwang EH, et al. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt. Brit J Pharmacol. 2010;160(5):1212–23.

    CAS 
    Article 

    Google Scholar
     

  • 72.

    Bian S, Zhao Y, Li FY, Lu SY, Wang SM, Bai XY, et al. 20 (S)-Ginsenoside Rg3 Promotes HeLa cell apoptosis by regulating autophagy. Molecules. 2019;24(20):3655.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 73.

    Li C, Dong YC, Wang LB, Xu GB, Yang Q, Tang XF, et al. Ginsenoside metabolite compound K induces apoptosis and autophagy in non-small cell lung cancer cells via AMPK-mTOR and JNK pathways. Biochem Cell Biol. 2019;97(4):406–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 74.

    Liu X, Zhang ZJ, Liu JH, Wang Y, Zhou Q, Wang SW, et al. Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice. Int Immunopharmacol. 2019;72:98–111.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 75.

    Szebeni J, Baranyi L, Savay S, Bodo M, Morse DS, Basta M, et al. Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol-Heart C. 2000;279(3):H1319–28.

    CAS 
    Article 

    Google Scholar
     

  • 76.

    Wu QQ, Wang QT, Fu JF, Ren RD. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: a review of the mechanisms. Food Funct. 2019;10(5):2330–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 77.

    Yang Z, Gao S, Wang JR, Yin TJ, Teng Y, Wu BJ, et al. Enhancement of Oral Bioavailability of 20 (S)-Ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metab Dispos. 2011;39(10):1866–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 78.

    Baek JS, Yeon WG, Lee CA, Hwang SJ, Park JS, Kim DC, et al. Preparation and characterization of mucoadhesive enteric-coating ginsenoside-loaded microparticles. Arch Pharm Res. 2015;38(5):761–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 79.

    Zhou M, Li X, Li YY, Yao QE, Ming Y, Li ZW, et al. Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Deliv. 2017;24(1):1230–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 80.

    Mathiyalagan R, Subramaniyam S, Kim YJ, Kim YC, Yang DC. Ginsenoside compound K-bearing glycol chitosan conjugates: Synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr Polym. 2014;112:359–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 81.

    Yang L, Xin J, Zhang ZH, Yan HM, Wang J, Sun E, et al. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo. J Pharm Pharmacol. 2016;68(9):1109–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 82.

    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 83.

    Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 84.

    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 85.

    Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55(3):403–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 86.

    Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 87.

    Mathiyalagan R, Wang C, Kim YJ, Castro-Aceituno V, Ahn S, Subramaniyam S, et al. Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation. Molecules. 2019;24(23):4367.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 88.

    Qiu RN, Qian F, Wang XF, Li HJ, Wang LZ. Targeted delivery of 20 (S)-ginsenoside Rg3-based polypeptide nanoparticles to treat colon cancer. Biomed Microdevices. 2019;21:18.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 89.

    Su XM, Zhang DS, Zhang HW, Zhao KY, Hou WS. Preparation and characterization of angiopep-2 functionalized Ginsenoside-Rg3 loaded nanoparticles and the effect on C6 Glioma cells. Pharm Dev Technol. 2020;25(3):385–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 90.

    Wang XH, Zhang X, Fan LL, He H, Zhang XF, Zhang YY, et al. Influence of polymeric carrier on the disposition and retention of 20 (R)-ginsenoside-rg3-loaded swellable microparticles in the lung. Drug Deliv Transl Re. 2018;8(1):252–65.

    Article 
    CAS 

    Google Scholar
     

  • 91.

    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 92.

    da Rocha MCO, da Silva PB, Radicchi MA, Andrade BYG, de Oliveira JV, Venus T, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnol. 2020;18:43.

    Article 
    CAS 

    Google Scholar
     

  • 93.

    Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154(2):123–40.

    CAS 
    Article 

    Google Scholar
     

  • 94.

    Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975–99.

    CAS 
    Article 

    Google Scholar
     

  • 95.

    Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts Chem Res. 2011;44(10):1094–104.

    CAS 
    Article 

    Google Scholar
     

  • 96.

    Cui YQ, Yang P, Sun P, Yan YD, Jin GY, Quan JS. Preparation of PEGylated liposomal ginsenoside; formulation design and in vitro evaluation. Indian J Pharm Sci. 2020;82(1):149–56.

    CAS 
    Article 

    Google Scholar
     

  • 97.

    Yu H, Teng LR, Meng QF, Li YH, Sun XC, Lu JH, et al. Development of liposomal Ginsenoside Rg3: formulation optimization and evaluation of its anticancer effects. Int J Pharmaceut. 2013;450(1–2):250–8.

    CAS 
    Article 

    Google Scholar
     

  • 98.

    Jin X, Yang Q, Cai N, Zhang ZH. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine. 2020;15(1):41–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 99.

    Zalipsky S, Hansen CB, deMenezes DEL, Allen TM. Long-circulating, polyethylene glycol-grafted immunoliposomes. J Control Release. 1996;39(2–3):153–61.

    CAS 
    Article 

    Google Scholar
     

  • 100.

    Xu LQ, Yu H, Yin SP, Zhang RX, Zhou YD, Li J. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons. J Nanopart Res. 2015;17:415.

    Article 
    CAS 

    Google Scholar
     

  • 101.

    Jin X, Zhou JP, Zhang ZH, Lv HX. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif Cell Nanomed B. 2018;46:S931–42.

    CAS 
    Article 

    Google Scholar
     

  • 102.

    Samimi R, Salarian M, Xu WZ, Lui EMK, Charpentier PA. Encapsulation of Acetyl Ginsenoside Rb-1 within Monodisperse Poly (DL-lactide-co-glycolide) microspheres using a microfluidic device. Ind Eng Chem Res. 2014;53(28):11333–44.

    CAS 
    Article 

    Google Scholar
     

  • 103.

    Lahiani MH, Eassa S, Parnell C, Nima Z, Ghosh A, Biris AS, et al. Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology. 2017;28:015101.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 104.

    Liu CB, Zhang D, Li DG, Jiang D, Chen X. Preparation and Characterization of Biodegradable Polylactide (PLA) Microspheres Encapsulating Ginsenoside Rg3. Chem Res Chin Univ. 2008;24(5):588–91.

    CAS 
    Article 

    Google Scholar
     

  • 105.

    Zhang JM, Wang YJ, Jiang YY, Liu TW, Luo YY, Diao EJ, et al. Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K. Carbohydr Polym. 2018;198:537–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 106.

    Yang L, Zhang ZH, Hou J, Jin X, Ke ZC, Liu D, et al. Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer. Int J Nanomed. 2017;12:7653–67.

    CAS 
    Article 

    Google Scholar
     

  • 107.

    Jin X, Yang Q, Cai N. Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy. Int J Nanomed. 2018;13:3827–38.

    CAS 
    Article 

    Google Scholar
     

  • 108.

    Zhan JM, Jiang YY, Li YP, Li WB, Zhou J, Chen JW, et al. Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound K to liver cancer cells. Carbohyd Polym. 2020;230:115576.

    Article 
    CAS 

    Google Scholar
     

  • 109.

    Zhang YW, Tong DY, Che DB, Pei B, Xia XD, Yuan GF, et al. Ascorbyl palmitate/D-alpha-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo. Int J Nanomed. 2017;12:605–14.

    Article 

    Google Scholar
     

  • 110.

    Kim YJ, Perumalsamy H, Markus J, Balusamy R, Wang C, Kang SH, et al. Development of Lactobacillus kimchicus DCY51 (T)-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells. Artif Cell Nanomed B. 2019;47(1):30–44.

    CAS 
    Article 

    Google Scholar
     

  • 111.

    Singh P, Singh H, Castro-Aceituno V, Ahn S, Kim YJ, Farh ME, et al. Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies. J Nanopart Res. 2017;19:257.

    Article 
    CAS 

    Google Scholar
     

  • 112.

    Xia XJ, Tao J, Ji ZW, Long CC, Hu Y, Zhao ZY. Increased antitumor efficacy of ginsenoside Rh-2 via mixed micelles: in vivo and in vitro evaluation. Drug Deliv. 2020;27(1):1369–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 113.

    Li P, Zhou XY, Qu D, Guo MF, Fan CY, Zhou T, et al. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol-polyethylene glycol-ginsenoside Rh2. Drug Deliv. 2017;24(1):834–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 114.

    Qu D, Wang L, Liu M, Shen S, Li T, Liu Y, et al. Oral nanomedicine based on multicomponent microemulsions for drug-resistant breast cancer treatment. Biomacromol. 2017;18(4):1268–80.

    CAS 
    Article 

    Google Scholar
     

  • 115.

    Singh P, Kim YJ, Singh H, Ahn S, Castro-Aceituno V, Yang DC. In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies. Int J Nanomed. 2017;12:4073–84.

    CAS 
    Article 

    Google Scholar
     

  • 116.

    Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci Rep-Uk. 2018;8:586.

    Article 
    CAS 

    Google Scholar
     

  • 117.

    Yao H, Li J, Song YB, Zhao H, Wei ZH, Li XY, et al. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition o f cancer cells. Int J Nanomed. 2018;13:6249–64.

    CAS 
    Article 

    Google Scholar
     

  • 118.

    Dong YN, Fu RZ, Yang J, Ma P, Liang LH, Mi Y, et al. Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo. Int J Nanomed. 2019;14:6971–88.

    CAS 
    Article 

    Google Scholar
     

  • 119.

    Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–88.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 120.

    Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6(11):2427–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 121.

    Vijayakumar A, Baskaran R, Baek JH, Sundaramoorthy P, Yoo BK. In Vitro cytotoxicity and bioavailability of ginsenoside-modified nanostructured lipid carrier containing curcumin. AAPS PharmSciTech. 2019;20:88.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 122.

    Qu D, Guo MF, Qin Y, Wang LX, Zong B, Chen YY, et al. A multicomponent microemulsion using rational combination strategy improves lung cancer treatment through synergistic effects and deep tumor penetration. Drug Deliv. 2017;24(1):1179–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 123.

    Salarian M, Samimi R, Xu WZ, Wang ZQ, Sham TK, Lui EMK, et al. Microfluidic Synthesis and Angiogenic Activity of Ginsenoside Rg (1)-Loaded PPF Microspheres. Acs Biomater Sci Eng. 2016;2(11):1872–82.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 124.

    Hou PP, Pu FL, Zou HY, Diao MX, Zhao CH, Xi CY, et al. Whey protein stabilized nanoemulsion: A potential delivery system for ginsenoside Rg3 whey protein stabilized nanoemulsion: Potential Rg3 delivery system. Food Biosci. 2019;31:100427.

    CAS 
    Article 

    Google Scholar
     

  • 125.

    Kunjiappan S, Govindaraj S, Parasuraman P, Sankaranarayanan M, Arunachalam S, Palanisamy P, et al. Design, in silico modelling and functionality theory of folate-receptor-targeted myricetin-loaded bovine serum albumin nanoparticle formulation for cancer treatment. Nanotechnology. 2020;31:155102.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 126.

    Bhuchar N, Sunasee R, Ishihara K, Thundat T, Narain R. Degradable Thermoresponsive Nanogels for Protein Encapsulation and Controlled Release. Bioconjugate Chem. 2012;23(1):75–83.

    CAS 
    Article 

    Google Scholar
     

  • 127.

    Teran-Saavedra NG, Sarabia-Sainz JAI, Silva-Campa E, Burgara-Estrella AJ, Guzman-Partida AM, Montfort GRC, et al. Lactosylated albumin nanoparticles: potential drug nanovehicles with selective targeting toward an in vitro model of hepatocellular carcinoma. Molecules. 2019;24(7):1382.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 128.

    Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for Imaging and therapy of cancer and inflammatory diseases. Accounts Chem Res. 2008;41(1):120–9.

    CAS 
    Article 

    Google Scholar
     

  • 129.

    Zhou CC, Song X, Guo CQ, Tan YL, Zhao J, Yang Q, et al. Alternative and injectable preformed albumin-bound anticancer drug delivery system for anticancer and antimetastasis treatment. Acs Appl Mater Inter. 2019;11(45):42534–48.

    CAS 
    Article 

    Google Scholar
     

  • 130.

    Ruan CH, Liu LS, Lu YF, Zhang Y, He X, Chen XL, et al. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B. 2018;8(1):85–96.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 131.

    Saha A, Pradhan N, Chatterjee S, Singh RK, Trivedi V, Bhattacharyya A, et al. Fatty-amine-conjugated cationic bovine serum albumin nanoparticles for target-specific hydrophobic drug delivery. Acs Appl Nano Mater. 2019;2(6):3671–83.

    CAS 
    Article 

    Google Scholar
     

  • 132.

    Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–15.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 133.

    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold Nanoparticles for Biology and Medicine. Angew Chem-Int Edit. 2010;49(19):3280–94.

    CAS 
    Article 

    Google Scholar
     

  • 134.

    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 135.

    Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590–605.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 136.

    Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 137.

    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11(3):169–83.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 138.

    D’Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology. 2021;32:192001.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 139.

    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46(6):833–40.

    CAS 
    Article 

    Google Scholar
     

  • 140.

    Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9(5):590–603.

    CAS 
    Article 

    Google Scholar
     

  • 141.

    Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 142.

    Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 143.

    Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A. 2005;102(33):11600–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 144.

    Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007;1(1):50–6.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 145.

    Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537–44.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 146.

    Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH. Biomedical applications of graphene and graphene oxide. Accounts Chem Res. 2013;46(10):2211–24.

    CAS 
    Article 

    Google Scholar
     

  • 147.

    Liu JQ, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 148.

    Zare-Zardini H, Taheri-Kafrani A, Ordooei M, Amiri A, Karimi-Zarchi M. Evaluation of toxicity of functionalized graphene oxide with ginsenoside Rh2, lysine and arginine on blood cancer cells (K562), red blood cells, blood coagulation and cardiovascular tissue: In vitro and in vivo studies. J Taiwan Inst Chem E. 2018;93:70–8.

    CAS 
    Article 

    Google Scholar
     

  • 149.

    Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM, Jovanovic SP, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 2011;32(4):1121–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 150.

    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 151.

    Tang FQ, Li LL, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 152.

    Poscher V, Salinas Y. Trends in degradable mesoporous organosilica-based nanomaterials for controlling drug delivery: a mini review. Materials. 2020;13(17):3668.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 153.

    Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 154.

    Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev. 2002;54(4):531–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 155.

    Li RX, He YW, Zhang SY, Qin J, Wang JX. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8(1):14–22.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 156.

    Chen ZW, Wang ZJ, Gu Z. Bioinspired and Biomimetic Nanomedicines. Accounts Chem Res. 2019;52(5):1255–64.

    CAS 
    Article 

    Google Scholar
     

  • 157.

    Chen ZW, Wen D, Gu Z. Cargo-encapsulated cells for drug delivery. Sci China Life Sci. 2020;63(4):599–601.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 158.

    Sun Z, Jiang Y, Stenzel M. Manipulating endogenous exosome biodistribution for therapy. SmartMat. 2021;2(2):127–30.

    Article 

    Google Scholar
     

  • 159.

    Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–42.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 160.

    Chaudhury A, Das S, Lee RFS, Tan KB, Ng WK, Tan RBH, et al. Lyophilization of cholesterol-free PEGylated liposomes and its impact on drug loading by passive equilibration. Int J Pharm. 2012;430(1–2):167–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 161.

    Barenholz Y. Doxil (R) – The first FDA-approved nano-drug: Lessons learned. J Control Release. 2012;160(2):117–34.

    CAS 
    Article 

    Google Scholar
     

  • 162.

    Wei XH, Cohen R, Barenholz Y. Insights into composition/structure/function relationships of Doxil (R) gained from “high-sensitivity” differential scanning calorimetry. Eur J Pharm Biopharm. 2016;104:260–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 163.

    Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, et al. Vincristine Sulfate Liposomes Injection (VSLI, Marqibo (R)): Results From a Phase I Study in Children, Adolescents, and Young Adults With Refractory Solid Tumors or Leukemias. Pediatr Blood Cancer. 2016;63(6):997–1005.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 164.

    Shah NN, Merchant M, Cole D, Richards K, Delbrook C, Widemann BC, et al. Vincristine Sulfate Liposomes Injection (VSLI, Marqibo): interim results from a phase i study in children and adolescents with refractory cancer. Blood. 2012;120(21):1497.

    Article 

    Google Scholar
     

  • 165.

    Zhang HJ. Onivyde for the therapy of multiple solid tumors. Oncotargets Ther. 2016;9:3001–7.

    CAS 
    Article 

    Google Scholar
     

  • 166.

    Qian TX, Cai ZW, Wong RNS, Mak NK, Jiang ZH. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg (3). J Chromatogr B. 2005;816(1–2):223–32.

    CAS 
    Article 

    Google Scholar
     

  • 167.

    Li T, Shu YJ, Cheng JY, Liang RC, Dian SN, Lv XX, et al. Pharmacokinetics and efficiency of brain targeting of ginsenosides Rg1 and Rb1 given as Nao-Qing microemulsion. Drug Dev Ind Pharm. 2015;41(2):224–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 168.

    Zhao LY, Wang L, Chang LP, Hou YL, Wei C, Wu YL. Ginsenoside CK-loaded self-nanomicellizing solid dispersion with enhanced solubility and oral bioavailability. Pharm Dev Technol. 2020;25(9):1127–38.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 169.

    Xiong J, Guo JX, Huang LS, Meng BY, Ping QN. The use of lipid-based formulations to increase the oral bioavailability of panax notoginseng saponins following a single oral gavage to rats. Drug Dev Ind Pharm. 2008;34(1):65–72.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 170.

    Knop K, Hoogenboom R, Fischer D, Schubert US. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Edit. 2010;49(36):6288–308.

    CAS 
    Article 

    Google Scholar
     

  • 171.

    Zhou XL, Hao Y, Yuan LP, Pradhan S, Shrestha K, Pradhan O, et al. Nano-formulations for transdermal drug delivery: a review. Chinese Chem Lett. 2018;29(12):1713–24.

    CAS 
    Article 

    Google Scholar
     

  • 172.

    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 173.

    Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliver Rev. 2012;64:37–48.

    Article 

    Google Scholar
     

  • 174.

    Zhao PF, Wang YH, Kang XJ, Wu AH, Yin WM, Tang YS, et al. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophagemediated immunotherapy. Chem Sci. 2018;9(10):2674–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 175.

    Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57(4):637–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 176.

    Hu Y, Yu D, Zhang XX. 9-amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochem. 2021;100:140–8.

    CAS 
    Article 

    Google Scholar
     

  • 177.

    Cho HJ, Lee SJ, Park SJ, Paik CH, Lee SM, Kim S, et al. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging. J Control Release. 2016;237:177–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 178.

    Liu N, Tang M, Ding JD. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere. 2020;245:125624.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 179.

    Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol. 2020;40(1):16–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 180.

    Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol. 2018;107:1278–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 181.

    Li L, Ni JY, Li M, Chen JR, Han LF, Zhu Y, et al. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy. Drug Deliv. 2017;24(1):1617–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 182.

    Etrych T, Kovar L, Strohalm J, Chytil P, Rihova B, Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J Control Release. 2011;154(3):241–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 183.

    Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliver Rev. 2000;41(2):147–62.

    CAS 
    Article 

    Google Scholar
     

  • 184.

    Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 185.

    Florczak A, Deptuch T, Lewandowska A, Penderecka K, Kramer E, Marszalek A, et al. Functionalized silk spheres selectively and effectively deliver a cytotoxic drug to targeted cancer cells in vivo. J Nanobiotechnol. 2020;18:177.

    CAS 
    Article 

    Google Scholar
     

  • 186.

    de Araujo JTC, Duarte JL, Di Filippo LD, Araujo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target. 2021;29(8):808–21.

    PubMed 
    Article 

    Google Scholar
     

  • 187.

    Sanadgol N, Wackerlig J. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: a short review. Pharmaceutics. 2020;12(9):831.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 188.

    Li C, Wang JC, Wang YG, Gao HL, Wei G, Huang YZ, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–62.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 189.

    Sempkowski M, Zhu C, Menzenski MZ, Kevrekidis IG, Bruchertseifer F, Morgenstern A, et al. Sticky patches on lipid nanoparticles enable the selective targeting and killing of untargetable cancer cells. Langmuir. 2016;32(33):8329–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 190.

    Li YM, Zhi XL, Lin JT, You X, Yuan J. Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mat Sci Eng C-Mater. 2017;73:189–97.

    CAS 
    Article 

    Google Scholar
     

  • 191.

    Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 192.

    Xu ZG, Wang DD, Xu S, Liu XY, Zhang XY, Zhang HX. Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem-Asian J. 2014;9(1):199–205.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 193.

    Fang ZZ, Shen YF, Gao DQ. Stimulus-responsive nanocarriers for targeted drug delivery. New J Chem. 2021;45(10):4534–44.

    CAS 
    Article 

    Google Scholar
     

  • 194.

    Harris AL. Hypoxia – A key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 195.

    Yang GB, Phua SZF, Lim WQ, Zhang R, Feng LZ, Liu GF, et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv Mater. 2019;31(25):1901513.

    Article 
    CAS 

    Google Scholar
     

  • 196.

    Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 197.

    Robinson JT, Tabakman SM, Liang YY, Wang HL, Casalongue HS, Vinh D, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 198.

    Wang XY, Xuan ZL, Zhu XF, Sun HT, Li JC, Xie ZY. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnol. 2020;18:108.

    Article 

    Google Scholar
     

  • 199.

    Zheng HQ, Zhang YN, Liu LF, Wan W, Guo P, Nystrom AM, et al. One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138(3):962–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 200.

    Park J, Jiang Q, Feng DW, Mao LQ, Zhou HC. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc. 2016;138(10):3518–25.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 201.

    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341(6149):974.

    CAS 
    Article 

    Google Scholar
     

  • 202.

    Montaseri H, Kruger CA, Abrahamse H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics. 2021;13(3):296.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 203.

    Wang F, Banerjee D, Liu YS, Chen XY, Liu XG. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst. 2010;135(8):1839–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 204.

    Ma YF, Huang J, Song SJ, Chen HB, Zhang ZJ. Cancer-targeted nanotheranostics: recent advances and perspectives. Small. 2016;12(36):4936–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 205.

    Loo C, Lowery A, Halas NJ, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–11.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 206.

    Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine-Uk. 2011;6(4):715–28.

    CAS 
    Article 

    Google Scholar
     

  • 207.

    Ming Y, Li YY, Xing HY, Luo MH, Li ZW, Chen JH, et al. Circulating tumor cells: from theory to nanotechnology-based detection. Front Pharmacol. 2017;8:35.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 208.

    Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, et al. From Aggregation-Induced Emission of Au (I)-Thiolate Complexes to Ultrabright Au (0)@Au (I)-Thiolate Core-Shell Nanoclusters. J Am Chem Soc. 2012;134(40):16662–70.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 209.

    Bhuniya S, Maiti S, Kim EJ, Lee H, Sessler JL, Hong KS, et al. An activatable theranostic for targeted cancer therapy and imaging**. Angew Chem Int Edit. 2014;53(17):4469–74.

    CAS 
    Article 

    Google Scholar
     

  • 210.

    Baker SN, Baker GA. Luminescent Carbon nanodots: emergent nanolights. Angew Chem Int Edit. 2010;49(38):6726–44.

    CAS 
    Article 

    Google Scholar
     

  • 211.

    Cai WB, Chen XY. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007;3(11):1840–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 212.

    Wang D, Lin BB, Ai H. Theranostic nanoparticles for cancer and cardiovascular applications. Pharm Res-Dordr. 2014;31(6):1390–406.

    CAS 
    Article 

    Google Scholar
     

  • 213.

    Lee HY, Li Z, Chen K, Hsu AR, Xu CJ, Xie J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD) – Conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49(8):1371–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 214.

    Zhao ZL, Fan HH, Zhou GF, Bai HR, Liang H, Wang RW, et al. Activatable Fluorescence/MRI Bimodal Platform for Tumor Cell Imaging via MnO2 Nanosheet-Aptamer Nanoprobe. J Am Chem Soc. 2014;136(32):11220–3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 215.

    Wang SG, Li X, Chen Y, Cai XJ, Yao HL, Gao W, et al. A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 Composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv Mater. 2015;27(17):2775.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 216.

    Zheng MB, Yue CX, Ma YF, Gong P, Zhao PF, Zheng CF, et al. Single-Step Assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano. 2013;7(3):2056–67.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 217.

    Fan WP, Bu WB, Shen B, He QJ, Cui ZW, Liu YY, et al. Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy. Adv Mater. 2015;27(28):4155–61.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 218.

    Liu JM, Chen JT, Yan XP. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal Chem. 2013;85(6):3238–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 219.

    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 220.

    Geszke M, Murias M, Balan L, Medjandi G, Korczynski J, Moritz M, et al. Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomater. 2011;7(3):1327–38.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 221.

    Pramanik M, Ku G, Li CH, Wang LHV. Design and evaluation of a novel breast cancer detection system combining both thermoacoustic, (TA) and photoacoustic, (PA) tomography. Med Phys. 2008;35(6):2218–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 222.

    Naik U, Nguyen QPH, Harrison RE. Binding and uptake of single and dual-opsonized targets by macrophages. J Cell Biochem. 2020;121(1):183–99.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 223.

    Li SD, Huang L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. J Control Release. 2010;145(3):178–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 224.

    Yang MY, Li JP, Gu P, Fan XQ. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater. 2021;6(7):1973–87.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 225.

    Jin J, Zhao QJ. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnol. 2020;18:75.

    CAS 
    Article 

    Google Scholar
     

  • 226.

    Liu XS, Tang IV, Wainberg ZA, Meng H. Safety considerations of cancer nanomedicine-a key step toward translation. Small. 2020;16(36):e2000673.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 227.

    Chen FM, Wang YJ, Gao J, Saeed M, Li TL, Wang WQ, et al. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021;270:120709.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 228.

    Murali VP, Holmes CA. Biomaterial-based extracellular vesicle delivery for therapeutic applications. Acta Biomater. 2021;124:88–107.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 229.

    Lin L, Wang YF, Wang L, Pan JY, Xu YC, Li SY, et al. Injectable microfluidic hydrogel microspheres based on chitosan and poly (ethylene glycol) diacrylate (PEGDA) as chondrocyte carriers. Rsc Adv. 2020;10(65):39662–72.

    CAS 
    Article 

    Google Scholar
     

  • 230.

    Gratton SEA, PohhauS PD, Lee J, Guo I, Cho MJ, DeSimone JM. Nanofabricated particles for engineered drug therapies: A preliminary Biodistribution study of PRINT (TM) nanoparticles. J Control Release. 2007;121(1–2):10–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 231.

    Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer. 2021;188:554.


    Google Scholar
     

  • 232.

    Katsiampoura A, Raghav K, Jiang ZQ, Menter DG, Varkaris A, Morelli MP, et al. Modeling of patient-derived xenografts in colorectal cancer. Mol Cancer Ther. 2017;16(7):1435–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular