Friday, October 7, 2022
HomeNanotechnologyFenton/Fenton-like metal-based nanomaterials mix with oxidase for synergistic tumor remedy | Journal...

Fenton/Fenton-like metal-based nanomaterials mix with oxidase for synergistic tumor remedy | Journal of Nanobiotechnology


  • 1.

    Fidler MM, Gupta S, Soerjomataram I, Ferlay J, Steliarova-Foucher E, Bray F. Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. Lancet Oncol. 2017;18:1579–89.

    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Wei W, Zeng H, Zheng R, Zhang S, An L, Chen R, et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 2020;21:e342–9.

    Article 

    Google Scholar
     

  • 3.

    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26:74–85.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 5.

    Phan JH, Moffitt RA, Stokes TH, Liu J, Young AN, Nie S, et al. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol. 2009;27:350–8.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 7.

    Wong CM, Wong KH, Chen XD. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol. 2008;78:927–38.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase–an overview. Biotechnol Adv. 2009;27:489–501.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 9.

    Sun K, Tang Y, Li Q, Yin S, Qin W, Yu J, et al. In Vivo dynamic monitoring of small molecules with implantable polymer-dot transducer. ACS Nano. 2016;10:6769–81.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 10.

    Fuentes-Baile M, Bello-Gil D, Pérez-Valenciano E, Sanz JM, García-Morales P, Maestro B, et al. CLytA-DAAO, free and immobilized in magnetic nanoparticles, induces cell death in human cancer cells. Biomolecules. 2020;10:222.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Dinda S, Sarkar S, Das PK. Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. Chem Commun. 2018;54:9929–32.

    Article 
    CAS 

    Google Scholar
     

  • 12.

    Yu J, Liu S, Wang Y, He X, Zhang Q, Qi Y, et al. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact Mater. 2022;7:389–400.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 13.

    Wang Y, Yu J, Luo Z, Shi Q, Liu G, Wu F, et al. Engineering endogenous tumor-associated macrophage-targeted biomimetic nano-RBC to reprogram tumor immunosuppressive microenvironment for enhanced chemo-immunotherapy. Adv Mater. 2021;33:e2103497.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Herrera FG, Ronet C, Ochoa DOM, Barras D, Crespo I, Andreatta M, et al. Low dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-21-0003.

    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev. 2021;177:113954.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 16.

    Yao X, Yang B, Wang S, Dai Z, Zhang D, Zheng X, et al. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemodynamic cancer therapies and photothermally-enhanced immunotherapy. J Mater Chem B. 2020;8:8010–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Wang Q, Niu D, Shi J, Wang L. A Three-in-one ZIFs-derived CuCo(O)/GOx@PCNs hybrid cascade nanozyme for immunotherapy/enhanced starvation/photothermal therapy. ACS Appl Mater Interfaces. 2021;13:11683–95.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 18.

    Gao F, Tang Y, Liu WL, Zou MZ, Huang C, Liu CJ, et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv Mater. 2019;31:e1904639.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 19.

    Yang J, Ma S, Xu R, Wei Y, Zhang J, Zuo T, et al. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J Control Release. 2021;334:21–33.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Shao Y, Wang Z, Hao Y, Zhang X, Wang N, Chen K, et al. Cascade catalytic nanoplatform based on “butterfly effect” for enhanced immunotherapy. Adv Healthc Mater. 2021;10:e2002171.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 21.

    Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35:830–49.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2017;8:992.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Friedmann AJ, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19:405–14.

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Auerbach M, Gafter-Gvili A, Macdougall IC. Intravenous iron: a framework for changing the management of iron deficiency. Lancet Haematol. 2020;7:e342–50.

    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Xie P, Yang ST, Huang Y, Zeng C, Xin Q, Zeng G, et al. Carbon nanoparticles-Fe (II) complex for efficient tumor inhibition with low toxicity by amplifying oxidative stress. ACS Appl Mater Interfaces. 2020;12:29094–102.

    PubMed 
    CAS 

    Google Scholar
     

  • 26.

    Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, et al. Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano. 2019;13:6383–95.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 27.

    Fu J, Shao Y, Wang L, Zhu Y. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem. Nanoscale. 2015;7:7275–83.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew Chem Int Ed Engl. 2016;55:2101–6.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 29.

    Wang L, Huo M, Chen Y, Shi J. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials. 2018;163:1–13.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 30.

    Nie X, Xia L, Wang HL, Chen G, Wu B, Zeng TY, et al. Photothermal therapy nanomaterials boosting transformation of Fe (III) into Fe (II) in tumor cells for highly improving chemodynamic therapy. ACS Appl Mater Interfaces. 2019;11:31735–42.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 31.

    Zhu H, Cao G, Qiang C, Fu Y, Wu Y, Li X, et al. Hollow ferric-tannic acid nanocapsules with sustained O(2) and ROS induction for synergistic tumor therapy. Biomater Sci. 2020;8:3844–55.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 32.

    Bao W, Liu X, Lv Y, Lu GH, Li F, Zhang F, et al. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy. ACS Nano. 2019;13:260–73.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 33.

    Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116:3722–811.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H(2)O(2) sequentially triggered chemodynamic therapy. J Am Chem Soc. 2019;141:849–57.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 35.

    Li Y, Gao Z, Chen F, You C, Wu H, Sun K, et al. Decoration of cisplatin on 2D metal-organic frameworks for enhanced anticancer effects through highly increased reactive oxygen species generation. ACS Appl Mater Interfaces. 2018;10:30930–5.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, et al. Synthesis of copper peroxide nanodots for H(2)O(2) self-supplying chemodynamic therapy. J Am Chem Soc. 2019;141:9937–45.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Cerpa W, Varela-Nallar L, Reyes AE, Minniti AN, Inestrosa NC. Is there a role for copper in neurodegenerative diseases? Mol Aspects Med. 2005;26:405–20.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 38.

    Urandur S, Banala VT, Shukla RP, Gautam S, Marwaha D, Rai N, et al. Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy. Acta Biomater. 2020;113:522–40.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Lin LS, Song J, Song L, Ke K, Liu Y, Zhou Z, et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO(2)-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed Engl. 2018;57:4902–6.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Xiao J, Zhang G, Xu R, Chen H, Wang H, Tian G, et al. A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials. 2019;216:119254.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30:966–79.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 42.

    Liang S, Xiao X, Bai L, Liu B, Yuan M, Ma P, et al. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Adv Mater. 2021;33:e2100333.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 43.

    Fu S, Yang R, Ren J, Liu J, Zhang L, Xu Z, et al. Catalytically active CoFe(2)O(4) nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. Acs Nano. 2021. https://doi.org/10.1021/acsnano.1c03128.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Li M, Ren G, Yang W, Wang F, Ma N, Fan X, et al. Modulation of high-spin Co (II) in Li/Co-MOFs as efficient fenton-like catalysts. Inorg Chem. 2021. https://doi.org/10.1021/acs.inorgchem.1c01632.

    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Li Z, Wang L, Li Z, Tian R, Lu C. Efficient bacteria inactivation by ligand-induced continuous generation of hydroxyl radicals in Fenton-like reaction. J Hazard Mater. 2019;369:408–15.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 46.

    Luo H, Cheng Y, Zeng Y, Luo K, Pan X. Enhanced decomposition of H(2)O(2) by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. Sci Total Environ. 2020;732:139335.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 47.

    Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016;16:2334–40.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 48.

    Zhang R, Feng L, Dong Z, Wang L, Liang C, Chen J, et al. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials. 2018;162:123–31.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 49.

    López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007;252:1–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Tang J, Meka AK, Theivendran S, Wang Y, Yang Y, Song H, et al. Openwork@Dendritic mesoporous silica nanoparticles for lactate depletion and tumor microenvironment regulation. Angew Chem Int Ed Engl. 2020;59:22054–62.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AJ, Lukashev AN, Lukasheva EV. Amino acid degrading enzymes and their application in cancer therapy. Curr Med Chem. 2019;26:446–64.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 52.

    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 53.

    Zhou J, Li M, Hou Y, Luo Z, Chen Q, Cao H, et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano. 2018;12:2858–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Zhao W, Hu J, Gao W. Glucose oxidase-polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS Appl Mater Interfaces. 2017;9:23528–35.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 55.

    Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew Chem Int Ed Engl. 2017;56:1229–33.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 56.

    Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, et al. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano. 2017;11:7006–18.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 57.

    Zhang L, Wang Z, Zhang Y, Cao F, Dong K, Ren J, et al. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano. 2018;12:10201–11.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 58.

    Chang K, Liu Z, Fang X, Chen H, Men X, Yuan Y, et al. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017;17:4323–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 59.

    Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun. 2017;8:357.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano. 2017;11:5558–66.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 61.

    Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79:4557–66.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 62.

    Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 2019;30:1055–74.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 63.

    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 64.

    Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.

    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol. 2004;14:267–74.

    PubMed 
    Article 

    Google Scholar
     

  • 66.

    Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14:198–206.

    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009;92:329–33.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 68.

    Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118:3930–42.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 69.

    Vander HM, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article 
    CAS 

    Google Scholar
     

  • 70.

    Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 71.

    Liu G, Kelly WK, Wilding G, Leopold L, Brill K, Somer B. An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin Cancer Res. 2009;15:3172–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 72.

    Baggstrom MQ, Qi Y, Koczywas M, Argiris A, Johnson EA, Millward MJ, et al. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol. 2011;6:1757–60.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    Wang H, Cheng L, Ma S, Ding L, Zhang W, Xu Z, et al. Self-assembled multiple-enzyme composites for enhanced synergistic cancer starving-catalytic therapy. ACS Appl Mater Interfaces. 2020;12:20191–201.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 74.

    Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 2018;78:5492–503.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 75.

    Ross EA, Devitt A, Johnson JR. Macrophages: the good, the bad, and the gluttony. Front Immunol. 2021;12:708186.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 76.

    Liao ZX, Fa YC, Kempson IM, Tseng SJ. Repolarization of M2 to M1 macrophages triggered by lactate oxidase released from methylcellulose hydrogel. Bioconjug Chem. 2019;30:2697–702.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 77.

    Harjes U. Metabolism: more lactate, please. Nat Rev Cancer. 2017;17:707.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 78.

    Tang Y, Jia C, Wang Y, Wan W, Li H, Huang G, et al. Lactate consumption via cascaded enzymes combined VEGF siRNA for synergistic anti-proliferation and anti-angiogenesis therapy of tumors. Adv Healthc Mater. 2021;10:e2100799.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 79.

    Tseng SJ, Kempson IM, Huang KY, Li HJ, Fa YC, Ho YC, et al. Targeting tumor microenvironment by bioreduction-activated nanoparticles for light-triggered virotherapy. ACS Nano. 2018;12:9894–902.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 80.

    Kasai K, Nakano M, Ohishi M, Nakamura T, Miura T. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl Microbiol Biotechnol. 2021;105:4819–32.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 81.

    Zeitler L, Fiore A, Meyer C, Russier M, Zanella G, Suppmann S, et al. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Elife. 2021;10:e64806.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 82.

    Rosini E, Pollegioni L. PEG-DAAO conjugate: a promising tool for cancer therapy optimized by protein engineering. Nanomedicine. 2020;24:102122.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 83.

    Fuentes-Baile M, García-Morales P, Pérez-Valenciano E, Ventero MP, Sanz JM, de Juan RC, et al. Cell death mechanisms induced by CLytA-DAAO chimeric enzyme in human tumor cell lines. Int J Mol Sci. 2020;21:8522.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Fuentes-Baile M, Pérez-Valenciano E, García-Morales P, de Juan RC, Bello-Gil D, Barberá VM, et al. CLytA-DAAO chimeric enzyme bound to magnetic nanoparticles. A new therapeutical approach for cancer patients? Int J Mol Sci. 2021;22:1477.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 85.

    Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale. 2019;11:5705–16.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 86.

    Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano. 2020;14:11017–28.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 87.

    Zhang L, Wan SS, Li CX, Xu L, Cheng H, Zhang XZ. An Adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H(2)O(2) and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018;18:7609–18.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 88.

    Du K, Liu Q, Liu M, Lv R, He N, Wang Z. Encapsulation of glucose oxidase in Fe(III)/tannic acid nanocomposites for effective tumor ablation via Fenton reaction. Nanotechnology. 2020;31:15101.

    Article 
    CAS 

    Google Scholar
     

  • 89.

    Wang Y, Song M. pH-responsive cascaded nanocatalyst for synergistic like-starvation and chemodynamic therapy. Colloids Surf B Biointerfaces. 2020;192:111029.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 90.

    Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, et al. Fusiform-like copper (II)-based metal-organic framework through relief hypoxia and GSH-depletion co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Appl Mater Interfaces. 2020;12:17254–67.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 91.

    Zhou X, Zhao W, Wang M, Zhang S, Li Y, Hu W, et al. Dual-modal therapeutic role of the lactate oxidase-embedded hierarchical porous zeolitic imidazolate framework as a nanocatalyst for effective tumor suppression. ACS Appl Mater Interfaces. 2020;12:32278–88.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 92.

    Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75:1782–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 93.

    Tabe Y, Lorenzi PL, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood. 2019;134:1014–23.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 94.

    Chu Q, Zhu H, Liu B, Cao G, Fang C, Wu Y, et al. Delivery of amino acid oxidase via catalytic nanocapsules to enable effective tumor inhibition. J Mater Chem B. 2020;8:8546–57.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 95.

    Kumari S, Advani D, Sharma S, Ambasta RK, Kumar P. Combinatorial therapy in tumor microenvironment: where do we stand? Biochim Biophys Acta Rev Cancer. 2021;1876:188585.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 96.

    Ana Luiza DSLO, Schomann T, de Geus-Oei LF, Kapiteijn E, Cruz LJ, de Araújo JR. Nanocarriers as a tool for the treatment of colorectal cancer. Pharmaceutics. 2021;13:1321.

    Article 

    Google Scholar
     

  • 97.

    Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci. 2021;296:102509.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 98.

    Xiao T, Hu W, Fan Y, Shen M, Shi X. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics. 2021;11:7057–71.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 99.

    Zhou ZH, Liang SY, Zhao TC, Chen XZ, Cao XK, Qi M, et al. Overcoming chemotherapy resistance using pH-sensitive hollow MnO(2) nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J Nanobiotechnol. 2021;19:157.

    Article 
    CAS 

    Google Scholar
     

  • 100.

    Li Q, Lin B, Li Y, Lu N. Erythrocyte-camouflaged mesoporous titanium dioxide nanoplatform for an ultrasound-mediated sequential therapies of breast cancer. Int J Nanomed. 2021;16:3875–87.

    Article 

    Google Scholar
     

  • 101.

    Su Z, Dong S, Zhao SC, Liu K, Tan Y, Jiang X, et al. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat. 2021;58:100777.

    PubMed 
    Article 

    Google Scholar
     

  • 102.

    Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. https://doi.org/10.1002/wnan.1730.

    Article 
    PubMed 

    Google Scholar
     

  • 103.

    Ke W, Li J, Mohammed F, Wang Y, Tou K, Liu X, et al. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano. 2019;13:2357–69.

    PubMed 
    CAS 

    Google Scholar
     

  • 104.

    Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater. 2017. https://doi.org/10.1002/adma.201700141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Fu LH, Hu YR, Qi C, He T, Jiang S, Jiang C, et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano. 2019;13:13985–94.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 106.

    Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 107.

    Guo Y, Jia HR, Zhang X, Zhang X, Sun Q, Wang SZ, et al. A glucose/oxygen-exhausting nanoreactor for starvation- and hypoxia-activated sustainable and cascade chemo-chemodynamic therapy. Small. 2020;16:e2000897.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 108.

    Zhang P, Hou Y, Zeng J, Li Y, Wang Z, Zhu R, et al. Coordinatively unsaturated Fe (3+) based activatable probes for enhanced MRI and therapy of tumors. Angew Chem Int Ed Engl. 2019;58:11088–96.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 109.

    Zhu Y, Xin N, Qiao Z, Chen S, Zeng L, Zhang Y, et al. Novel tumor-microenvironment-based sequential catalytic therapy by Fe (II)-engineered polydopamine nanoparticles. ACS Appl Mater Interfaces. 2019;11:43018–30.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 110.

    Chen Q, Zheng Z, He X, Rong S, Qin Y, Peng X, et al. A tumor-targeted theranostic nanomedicine with strong absorption in the NIR-II biowindow for image-guided multi-gradient therapy. J Mater Chem B. 2020;8:9492–501.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 111.

    Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl. 2019;58:670–80.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 112.

    Guan M, Zhou Y, Liu S, Chen D, Ge J, Deng R, et al. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials. 2019;213:119218.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 113.

    Wang M, Song J, Zhou F, Hoover AR, Murray C, Zhou B, et al. NIR-Triggered phototherapy and immunotherapy via an antigen-capturing nanoplatform for metastatic cancer treatment. Adv Sci. 2019;6:1802157.

    Article 
    CAS 

    Google Scholar
     

  • 114.

    Yue W, Chen L, Yu L, Zhou B, Yin H, Ren W, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10:2025.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 115.

    Zhao Z, Ma Z, Wang B, Guan Y, Su XD, Jiang Z. Mn (2+) Directly activates cGAS and structural analysis suggests Mn (2+) induces a noncanonical catalytic synthesis of 2’3’-cGAMP. Cell Rep. 2020;32:108053.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 116.

    Hu C, Cai L, Liu S, Liu Y, Zhou Y, Pang M. Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy. Bioconjug Chem. 2020;31:1661–70.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 117.

    Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity. 2018;48:675–87.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 118.

    Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 119.

    Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 120.

    Khoo LT, Chen LY. Role of the cGAS-STING pathway in cancer development and oncotherapeutic approaches. Embo Rep. 2018;19:e46935.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 121.

    Li A, Yi M, Qin S, Song Y, Chu Q, Wu K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019;12:35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 122.

    Zou MZ, Liu WL, Gao F, Bai XF, Chen HS, Zeng X, et al. Artificial natural killer cells for specific tumor inhibition and renegade macrophage re-education. Adv Mater. 2019;31:e1904495.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 123.

    Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24:657–71.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 124.

    Pötzl J, Roser D, Bankel L, Hömberg N, Geishauser A, Brenner CD, et al. Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer. 2017;140:2125–33.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 125.

    Díaz FE, Dantas E, Cabrera M, Benítez CA, Delpino MV, Duette G, et al. Fever-range hyperthermia improves the anti-apoptotic effect induced by low pH on human neutrophils promoting a proangiogenic profile. Cell Death Dis. 2016;7:e2437.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 126.

    Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 127.

    Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49:1140–6.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 128.

    Li K, Lin C, He Y, Lu L, Xu K, Tao B, et al. Engineering of cascade-responsive nanoplatform to inhibit lactate efflux for enhanced tumor chemo-immunotherapy. ACS Nano. 2020;14:14164–80.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 129.

    Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun. 2016;7:13193.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 130.

    Zhang M, Wang W, Wu F, Zheng T, Ashley J, Mohammadniaei M, et al. Biodegradable Poly (γ-glutamic acid) @glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy. Biomaterials. 2020;252:120106.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 131.

    Xie W, Deng WW, Zan M, Rao L, Yu GT, Zhu DM, et al. Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano. 2019;13:2849–57.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 132.

    Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 133.

    Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012;188:21–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 134.

    Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood. 2011;118:5498–505.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 135.

    Sun K, Hu J, Meng X, Lei Y, Zhang X, Lu Z, et al. Reinforcing the induction of immunogenic cell death via artificial engineered cascade bioreactor-enhanced chemo-immunotherapy for optimizing cancer immunotherapy. Small. 2021;17:e2101897.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 136.

    Chang M, Wang M, Wang M, Shu M, Ding B, Li C, et al. A Multifunctional cascade bioreactor based on hollow-structured Cu(2) MoS(4) for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv Mater. 2019;31:e1905271.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 137.

    Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25–37.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 138.

    Sun D, Zhou S, Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano. 2020;14:12281–90.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 139.

    Brandl F, Busslinger S, Zangemeister-Wittke U, Plückthun A. Optimizing the anti-tumor efficacy of protein-drug conjugates by engineering the molecular size and half-life. J Control Release. 2020;327:186–97.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 140.

    Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev. 2020;157:142–60.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 141.

    Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 142.

    Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19:566–75.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 143.

    Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano. 2020;14:3075–95.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 144.

    He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of clinical translation of cancer nanomedicines-lessons learned from successes and failures. Acc Chem Res. 2019;52:2445–61.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 145.

    Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, et al. Nanoparticles’ interactions with vasculature in diseases. Chem Soc Rev. 2019;48:5381–407.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 146.

    Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat Commun. 2013;4:1673.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 147.

    Peng F, Setyawati MI, Tee JK, Ding X, Wang J, Nga ME, et al. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol. 2019;14:279–86.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 148.

    Setyawati MI, Tay CY, Bay BH, Leong DT. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano. 2017;11:5020–30.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 149.

    Wang JP, Zhang LY, Peng F, Shi XH, Leong DT. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem Mater. 2018;30:3759–67.

    Article 
    CAS 

    Google Scholar
     

  • 150.

    Tay CY, Setyawati MI, Leong DT. Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano. 2017;11:2764–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 151.

    Moxon ER, Murphy PA. Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc Natl Acad Sci U S A. 1978;75:1534–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 152.

    Sperling C, Fischer M, Maitz MF, Werner C. Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials. 2009;30:4447–56.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 153.

    Cao J, Yang P, Wang P, Xu S, Cheng Y, Qian K, et al. “Adhesion and release” nanoparticle-mediated efficient inhibition of platelet activation disrupts endothelial barriers for enhanced drug delivery in tumors. Biomaterials. 2021;269:120620.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments